martes, 28 de noviembre de 2023

A los Bioplásticos les crecen los problemas

A finales de setiembre de este año, los medios de comunicación españoles se hicieron eco de una nota de prensa del Consejo Superior de Investigaciones Científicas (CSIC) en la que se anunciaba la publicación de un artículo de uno de sus Centros (IDAEA en Barcelona) en el que se comparaba la toxicidad de las bolsas fabricadas a base de plásticos compostables con la de las bolsas de plástico convencionales. El artículo es uno más, y no particularmente relevante, de una serie de otros que han ido apareciendo recientemente sobre la toxicidad de los llamados genéricamente Bioplásticos.

Hace ahora tres años, en una entrada sobre esos materiales, me hacía eco de un artículo en el New York Times del conocido periodista en cuestiones medioambientales, John Schwartz, titulado "Por qué biodegradable no es lo que tú piensas". La tesis de ese artículo era que algunos de los envases de plástico con etiquetas “bio” o “verde”, solo se degradan bajo especiales condiciones y que, en algunos casos, pueden llegar a complicar el reciclado de los plásticos convencionales, hoy por hoy mucho más abundantes a nivel global (casi 400 MM de toneladas anuales frente a 2.2 MM de toneladas de los Bioplásticos).

Aprovechaba esa entrada en mi Blog para dejar bien establecidas las diferencias entre los diferentes miembros de la familia de los Bioplásticos. Un 48% de ellos son plásticos derivados de la biomasa pero no degradables, un buen ejemplo de los cuales es el Bio-polietileno (Bio-PE), obtenido a partir de caña de azúcar pero que, al final, es polietileno como el sintético y, por tanto, no biodegradable por muy biomasa que sea su origen.

El otro 52% de esos Bioplásticos son plásticos biodegradables y/o compostables. Obtenidos de la biomasa o puramente sintéticos (cosa que a alguno le  extrañará), todos los compostables son biodegradables pero no todos los biodegradables pueden compostarse. Quien quiera más detalles, puede pasarse por la entrada del Blog arriba enlazada.

Entre las referencias citadas por el artículo del IDAEA-CSIC, las tres última corresponden a tres trabajos publicados por un grupo de investigadores alemanes y noruegos que, a mi entender, son estudios más completos que el del CSIC. Particularmente me voy a servir de uno de 2020, que incluye un número mayor de Bioplásticos comerciales (hasta 42), utiliza técnicas analíticas de última generación y me sirve igual que el del CSIC para fundamentar lo que quiero contar aquí.

En cualquier caso, uno y otro artículo dan una vuelta de tuerca más a las pegas de Schwartz a los Bioplásticos y nos transmiten la idea de que, desde el punto de vista de la toxicidad (algo en lo que Schwartz no entraba), los plásticos biodegradables y compostables, presentes ahora en forma de bolsas en muchos supermercados, quizás sean tan tóxicos (y algunos probablemente más) que los plásticos convencionales, como el más modesto de los polietilenos empleado en bolsas de compra y bolsas de basura de toda la vida.

Y he recalcado el quizás del párrafo anterior porque es muy importante aclarar ya desde el principio que, en ese tipo de estudios y como fase inicial, se realiza una extracción con metanol en las muestras de los plásticos estudiadas, a la búsqueda de aquellas sustancias contenidas en el plástico y que no tienen carácter de tal. Los mismos autores reconocen que empezar así es el peor de los escenarios posibles, porque estamos extrayendo muchas cosas que, probablemente, nunca saldrían del plástico en condiciones de uso realistas, como puedan ser su empleo como filmes, envases o piezas de plástico de todo tipo que, casi nunca, están en contacto con metanol. Pero el metanol es un eficaz medio para extraer todo lo que acompaña al plástico.

En el trabajo de los noruegos y alemanes, haciendo uso de una de las técnicas analíticas más potentes que tenemos los químicos hoy en día, la conocida con el acrónimo UPLC-QTOF-MS/M, se separan los posibles componentes extraídos por el metanol en cada Bioplástico investigado. Y, adicionalmente, se hacen una serie de ensayos biológicos “in vitro” con los diversos extractos en metanol, para evaluar la toxicidad de los mismos.

La UPLC-QTOF-MS/M arriba mencionada permitió a los investigadores detectar mas de 43.000 compuestos químicos en los extractos de metanol de las 42 muestras de Bioplásticos estudiados. En el caso de los Bioplásticos a base de celulosa y almidón, se detectaron hasta 20.000 compuestos diferentes. Otra peculiaridad es que cada muestra de un mismo plástico, era muy distinta de sus hermanas. Por ejemplo, en diez muestras de ácido poliláctico (PLA) investigadas, el número de sustancias detectadas oscilaba entre 880 y 17.000. En cualquier caso, los polímeros basados en plantas, como los fabricados a partir de almidón y celulosa, eran los que más sustancias químicas presentaban.

La mayoría de esos compuestos químicos que han dejado su “firma” en los experimentos con la mencionada técnica no se pudieron identificar químicamente, es decir, no se sabe exactamente qué son. Uno pudiera pensar que esas sustancias son aditivos que se adicionan generalmente a los Bioplásticos para mejorar algunas de sus deficientes propiedades. Ese sería, por ejemplo, el caso de los Bioplásticos a base de almidón que se aditivan en porcentajes importantes para poder fabricar objetos útiles con ellos (es lo que se denomina almidón termoplástico o TPS). Pero eso no es así. Aunque se pudieron identificar algunos aditivos como plastificantes, antioxidantes, etc., la mayoría de las pocas sustancias identificadas no tienen características de aditivo alguno. Así que los autores sugieren que algunos de esos compuestos identificados en estos Bioplásticos derivados de plantas, pudieran provenir de procesos naturales que ocurren en esas plantas, debidos a acciones microbianas, enzimáticas o similares.

En cualquier caso, se hayan podido identificar o no, la gran mayoría de esos compuestos detectados en los extractos, gracias a la extremada sensibilidad de la citada técnica instrumental, están en cantidades ridículas.

Los estudios de toxicidad realizados con los extractos en metanol de los plásticos investigados muestran que la mayoría de ellos exhiben actividad tóxica en los ensayos “in vitro”, siendo particularmente evidente esa toxicidad en el caso, otra vez, de los extractos de polímeros a base de almidón o celulosa (los más “naturales”). Los autores comparan esos datos con los obtenidos en un trabajo anterior con plásticos convencionales, llegando a la conclusión de que el grado de toxicidad de los extractos de unos y otros es comparable.

¿Es este tipo de resultados un potente torpedo en la línea de flotación de los Bioplásticos?. Pues en principio no me parece, porque creo que seguirán proponiéndose como alternativa a los plásticos convencionales, dentro de esa creciente plastifobia que nos asola. Pero si puede ser una piedra más en el tortuoso camino que están siguiendo los Bioplásticos para poder cumplir las expectativas que sobre ellos se tenían hace más de treinta años. Y os lo dice alguien que se ha tirado esos mismos años publicando artículos y dirigiendo tesis sobre estos temas. Pero que cada vez ha ido siendo menos optimista sobre el papel de estos materiales en el inmediato futuro, como ya quedó claro en otras entradas de este Blog. Aunque, como siempre digo, no tenéis por qué hacerme caso.

Pero también os diré que me preocupa muy poco esa teórica toxicidad a la hora de comerme o beberme algo que haya estado contenido en ese tipo de material. Al menos hasta que se demuestre su toxicidad de forma más realista que a base de los extractos en metanol.

Leer mas...

miércoles, 15 de noviembre de 2023

Osos polares y pingüinos emperador

Hace unos pocos años, era habitual ver vídeos de National Geographic, que mostraban a magníficos osos polares intentando desesperadamente saltar de un témpano de hielo a otro en el Océano Ártico. Las imágenes se aderezaban con comentarios (entre otros) de David Attenborough sobre el futuro de los osos polares en el contexto del cambio climático y el deshielo del Océano Ártico. En diciembre de 2017 y en este contexto, se hizo viral un vídeo de un pobre oso esquelético que, posteriormente, la propia National Geographic reconoció que era un viejo oso enfermo a punto de fallecer.

Creo que algunas de las reacciones a ese vídeo, y el propio reconocimiento de la revista, dieron inicio al declive de la hipótesis subyacente en todos esos reportajes previos. Y que no es otra que el deshielo del Océano Ártico, debido al cambio climático, dificulta cada vez más la caza de focas para los osos polares. En consecuencia, pasan hambre y corren el peligro de desaparecer.

A menudo, estos documentales sobre el medio ambiente son deprimentes a pesar de sus magníficas fotografías, porque siempre nos transmiten el sombrío mensaje de la extinción de las especies y la destrucción de la naturaleza. Sin embargo, sabemos que tanto los activistas medioambientales como sus oponentes (por ejemplo, los pueblos que habitan esas extremas latitudes y que viven en contacto con las poblaciones de osos) suelen exagerar sus percepciones. Los mensajes de unos y otros tienden a tener sus raíces más en intereses políticos que en la ciencia y es difícil conocer la verdad de lo que está pasando.

Este vuestro Búho tenía la mosca detrás de la oreja sobre el asunto desde que, de forma casual, caí en el Blog que Susan Crockford, una Doctora en Zoología que ha dedicado más de dos décadas al estudio de la ecología y la evolución de los osos polares. No siempre me ha gustado el tono agresivo con el que la Dra. Crockford escribe sus post, pero como me conozco su tormentosa historia académica, tampoco me extraña.

Además de seguir a la Crockford, yo había buscado por mi cuenta información al respecto en diversas fuentes. Y casi todas coincidían en que mientras que en la década de los setenta, la población de osos polares en el Ártico había caído hasta una cifra preocupante de entre 5000 y 8000 individuos , esa población se había recuperado posteriormente y, ya en 2008, las cifras oscilaban entre 22 000 y 26 000 ejemplares, un aumento del 300% en tres décadas.

Y la razón no es otra que, en 1973, se promulgó una prohibición mundial de la caza de osos polares. Como los osos polares solo se encuentran en cuatro países y todos ellos son países prósperos, la aplicación de esta prohibición tuvo bastante éxito. El resultado fue el aumento del 300% arriba mencionado. Es un ejemplo más que demuestra que los animales son lo suficientemente resistentes como para soportar las variaciones naturales de su hábitat, pero no pueden hacer frente fácilmente a la matanza indiscriminada por parte del hombre, utilizando armas de alta tecnología.

Y cuando yo ya tenía toda esa información en mi mano y casi coincidiendo con el video viral que mencionaba arriba (2017), compré y leí el libro de la Crockford titulado Polar Bear Facts and Myths: A Science Summary for All Ages. El libro se estructura sobre la base de 18 afirmaciones relacionadas con los osos polares que, para esa época, eran habituales en los medios de comunicación, mostrando cuáles de esas afirmaciones responden a hechos reales y cuáles son simples leyendas.

Desde entonces se han producido cada vez menos noticia sobre los osos polares en los medios y RRSS, excepto algunas que describen enfrentamientos entre ellos y los humanos que viven cerca de sus lares. Pero me da la sensación de que, desde el punto de vista de los activistas climáticos, el objetivo osos polares se da por amortizado. De hecho, un artículo publicado el 30 de agosto por The Guardian (conocido por sus tesis pro activas sobre el calentamiento global), lo declara hasta en el título. Y a mi me ha bastado leerlo para darme cuenta de que otros expertos en osos polares, consultados por el periódico, no están muy lejos de las ideas de la Crockford.

Esa declaración de The Guardian no parece casual cuando, en esos mismos días de agosto de 2023, el interés se había focalizado en las colonias de pingüinos emperador que viven en el otro extremo del globo, en las proximidades del continente antártico. Un artículo publicado el día 24 de ese mes hablaba de la muerte de hasta 10.000 polluelos de esa especie en los últimos meses, artículo que tuvo una amplia repercusión en todos los grandes medios de comunicación y redes sociales, como base para extender la idea de que esa especie está en peligro de extinción.

Pero como ya hizo hace unos años en el caso de los osos polares y el tiempo parece haberle dado la razón, la Dra. Crockford, en su tono habitual, parece discrepar. Resumiendo lo dicho en una entrada en su Blog el pasado 27 de agosto (las negritas son mías):

A pesar de la expectación suscitada la semana pasada por el artículo recientemente publicado por Peter Fretwell y sus colegas, no existe ningún fundamento ecológico plausible para proponer que el fracaso reproductivo de una sola temporada en cuatro pequeñas colonias de pingüinos emperador (Aptenodytes fosteri), debido a las condiciones de La Niña -fenómenos no relacionados con las emisiones de dióxido de carbono- sean signos de una futura "cuasi extinción" de la especie. Ninguna de las 282.150 parejas reproductoras de emperadores adultos que se calcula existen frente a la Península Antártica se perdieron en 2022 y los polluelos nacidos en varias docenas de otras colonias de emperadores alrededor del continente antártico sobrevivieron, lo que significa que se trató de un pequeño bache en el camino y no de una catástrofe para la especie.

Falta por ver ahora, si el asunto de los pingüinos evoluciona de manera similar al de los osos polares o, en este caso, la Crockford ha metido la pata. Cosas a seguir para un jubilado a tiempo completo, como un servidor.

Leer mas...

viernes, 27 de octubre de 2023

Sobre la Captura Directa de CO2 desde el Aire

El Informe Especial sobre Calentamiento Global de 1,5 ºC (2018), preparado por el IPCC, a instancia de la Conferencia de Naciones Unidas sobre Cambio Climático de 2015, estableció que, para lograr el objetivo de no sobrepasar ese límite de temperatura con respecto a la llamada época preindustrial, debemos conseguir, para el año 2050, el llamado NetZero en lo que a emisiones de gases de efecto invernadero (GEI) se refiere. Un empeño que el propio informe reconoce que es bastante complicado y que necesita de “reducciones de emisiones ambiciosas” y “cambios rápidos, profundos y sin precedentes en todos los aspectos de la sociedad”.
Además de intentar no emitir más GEIs (fundamentalmente CO2) a la atmósfera, el informe recomienda otras actuaciones como, por ejemplo, la captura directa en el propio lugar de la emisión del CO2 producido por grandes emisores del mismo, como es el caso de acerías, cementeras o industrias químicas. Como las cantidades a captar son grandes hay que pensar en qué hacer posteriormente con ese CO2, de lo que enseguida hablaremos.Pero no debemos olvidar un problema inherente al hecho de que llevemos muchos años vertiendo CO2. Dado su ciclo de vida en la atmósfera, seguirá habiendo en ella, durante mucho tiempo, una cantidad de CO2 superior a la deseable para llegar a alcanzar los objetivos que se propusieron en 2015 en Paris. Así que necesitamos, adicionalmente, eliminar cantidades importantes del CO2 que actualmente ya se encuentran en la atmósfera.

Para hacerlo hay soluciones o métodos que podemos llamar naturales como plantar más árboles, auténticos sumideros de ese gas. O, aun mejor, gestionar eficientemente todo lo que tiene que ver con el suelo, los bosques y los cultivos. Pero los cálculos parecen indicar que eso tampoco sería suficiente. Así que, de esa necesidad de hacer algo más, surge la tecnología denominada Captura Directa de Aire, también conocida por sus siglas en inglés, DAC.

Explicado de forma sencilla, la cosa consistente en capturar grandes cantidades de aire por medio de esa especie de ventiladores invertidos que veis en la foto que ilustra esta entrada, eliminar el CO2 presente en él (que como sabéis, solo supone el 0,04% del aire), devolver el aire sin dióxido de carbono a la atmósfera y utilizar el CO2 así obtenido en diversas aplicaciones (p.e. en la fabricación de combustibles sintéticos para aviación, fabricación de plásticos, etc.) o, al igual que el capturado en grandes emisores que mencionaba arriba, almacenarlo geológicamente.

Evidentemente, todo esto parece demasiado sencillo para que sea verdad. Se necesita buscar esos lugares geológicos donde almacenarlo (y donde lo más probable es que haya oposición ciudadana) y buscar nuevas aplicaciones de empleo de ese CO2 para no acumularlo sin fin . Y, si al final le damos un uso, se necesitarán extensas redes de gaseoductos para distribuir ese CO2 a los lugares que vayan a emplearlo, además de adecuados estudios sobre la viabilidad económica de todo ello.

Pero uno ha sido profesor de Termodinámica durante muchos años. Y, en el caso de la DAC, hay un aspecto ligado a la energía del proceso que me intrigaba. Incluso había pergeñado una serie de cálculos al respecto cuando, de repente, me encontré con un artículo que confirmaba mis hipótesis (o, al menos, el autor pensaba en similares términos a los míos). Estaba en el blog The Climate Brinck, alojado en Substack (la plataforma a la que me estoy aficionando un montón). Un blog que comparten dos climatólogos muy conocidos y próximos al IPCC (Andrew Dessler y Zeke Hausfather) aunque, en lo relativo al artículo del que estamos hablando, el autor es el primero.

La Termodinámica permite simular muchos procesos que ocurren en la Naturaleza de forma muy simplificada. Y con la peculiaridad de que, al hacerlo, se puede evaluar la forma más eficiente, en términos energéticos, del proceso simulado. Y así, en el caso de la tecnología DAC, ésta puede modelarse en dos procesos diferenciados. Uno implica la separación del CO2 desde el aire que lo contiene y el otro comprimirlo hasta una presión alrededor de 100 veces la presión atmosférica, que sería la adecuada para almacenarlo en algún depósito geológico. Los que conocen algo de Termodinámica saben que, para hacerlo, hay que definir los llamados estados iniciales y finales del proceso, la trayectoria reversible entre ambos, funciones de estado que, como la energía libre de Gibbs, cuantifican la energía implicada en el proceso y cosas similares. Pero eso se queda para los profesores que quieran usar la entrada a la que me estoy refiriendo para plantear un problema sencillo de Termo a sus estudiantes.

El resultado, en el caso de la separación, es que necesitaríamos 500 kilojoules (kJ) para separar 1 kilo de CO2 del aire. Si quisiéramos eliminar los cuarenta mil millones de toneladas de CO2 que actualmente se emiten cada año, necesitaríamos del orden de 2x10(19) J cada año, lo que corresponde a la energía suministrada durante ese año por el equivalente de 300 presas Hoover, una presa gigantesca situada en el curso del río Colorado. O la proporcionada anualmente por 350 centrales nucleares como la de Almaraz. Y si ahora calculamos la energía necesaria para comprimir todo ese gas a 100 atmósferas, necesitaríamos un 50% adicional de la energía anterior. En total, y si hacemos los cálculos necesitaríamos aproximadamente el 6% de toda la energía consumida anualmente por la humanidad. O, en términos de potencia eléctrica, alrededor de un Teravatio (TW).

Pero, y esto es lo más importante, ese es el valor más pequeño que puede esperarse en virtud de las simplificaciones termodinámicas que hemos realizado para obtenerlo. De ahí hacia arriba, todo dependerá de los procesos realmente implicados. Algunas de las compañías que están liderando la investigación en este campo estiman que ese gasto energético podría multiplicarse por diez. Y, evidentemente, solo podría hacerse a partir de energías renovables como la eólica, la fotovoltaica, la hidroeléctrica, la geotérmica, etc. Porque, si tuviéramos que usar combustibles fósiles para obtener la energía necesaria, sería la pescadilla que se muerde la cola.

Así que no es extraño que Dressler termine su entrada diciendo que aunque su intención “no es abogar a favor o en contra de la DAC, los beneficios que de ella se derivarían serían de tanto calado como los obstáculos técnicos, económicos o industriales a abordar”. Y, como buen seguidor de las conclusiones del IPCC, argumenta que “nuestra prioridad debe ser descarbonizar nuestra economía”.

Lo que, visto lo visto por el momento, no es tampoco una cuestión baladí.

Leer mas...

viernes, 6 de octubre de 2023

Obesógenos: Fat is in the air. Una entrada invitada(*)

Durante la Primera Guerra Mundial, las autoridades militares francesas estaban desconcertadas: numerosos trabajadores de sus fábricas de municiones comenzaron a sufrir un misterioso adelgazamiento, acompañado de hipertermia extrema de hasta 45ºC, que causó más de 35 muertos y cientos de afectados. Los supervivientes no paraban de adelgazar por mucho que comieran. Solo recuperaban peso cuando trabajaban lejos de las municiones. El asunto quedó archivado y no se estudió en profundidad. ¿Qué importaban unas decenas de muertos al año cuando en la primera batalla del Marne murieron 80.000 soldados franceses en una sola semana?

En 1933, el farmacólogo americano Maurice L. Tainter investigó el asunto y halló la causa. Los obuses franceses utilizaban ácido pícrico (2,4,6-trinitrofenol) como explosivo y en su preparación mediante nitración del fenol se producía un subproducto, el 2,4-dinitrofenol (DNP) que, administrado en pequeña cantidad a ratas de laboratorio, recapitulaba la anorexia e hipertermia de los trabajadores franceses. Hoy sabemos que el DNP es uno de los anoréxicos más potentes que existen y que una pequeña cantidad del mismo, ingerido o inhalado como polvo durante un breve período, inhibe la formación de ATP (Trifosfato de adenosina)en las mitocondrias, bloquea la síntesis de proteínas, estimula el consumo de oxígeno y provoca una hipertermia descontrolada. Lo importante es que el caso del DNP puso de manifiesto que la presencia ambiental de ciertas moléculas sintéticas puede alterar, significativamente, la masa corporal con independencia de la alimentación o el ejercicio.

Pasaron las décadas y la penosa delgadez de comienzos del siglo XX ha sido reemplazada por la denostada “pandemia de obesidad” actual. Por consiguiente, solo era cuestión de tiempo que surgiese la pregunta: ¿podrían algunos productos químicos presentes en nuestros entornos laborales, urbanos, alimentos, etc… provocar el efecto contrario al de DNP? Es decir, ¿podrían añadir una obesidad “extra” a la que nos corresponde por dieta y ejercicio? Esta idea es muy intuitiva y se ha concretado en la llamada hipótesis de los productos obesógenos,que ha sido recogida en artículos de revisión como éste publicado en la revista Journal of Pharmacology.

A pesar de que en las conclusiones del artículo los autores acaban admitiendo que la obesidad humana es un proceso multifactorial y que, en la práctica, es virtualmente imposible distinguir claramente el “efecto obesógeno” de otros factores como la sobrealimentación, el desequilibrio nutricional, la falta de ejercicio o los factores genéticos, no por ello dejan de preconizar la prohibición o drástica limitación de los obesógenos como medida preventiva para combatir la obesidad global.

El problema es que los obesógenos forman parte de muchos productos que usamos diariamente como detergentes, alimentos, envases de plástico, ropa, cosméticos, etc…, lo que dificulta sortear sus efectos. A día de hoy, y como se recoge en este artículo de divulgación (basado en gran parte en el anterior), en torno a 50 productos químicos han sido etiquetados por algunos endocrinólogos como obesógenos o potenciales obesógenos. Entre ellos están el famoso bisfenol A (BPA), de cuya vida y milagros ya se habló en este Blog (ver aquí y aquí), los bifenilos policlorados, los ftalatos, los éteres de polibromodifenilos, las sustancias perfluoroalquiladas y polifluoroalquiladas, los parabenos, la acrilamida, los alquilfenoles, el dibutilestaño o algunos metales pesados como el cadmio y el arsénico.

En el laboratorio se ha comprobado que, por ejemplo, el BPA es un disruptor endocrino que activa los adipocitos encargados de almacenar grasa y aumenta perceptiblemente el tejido adiposo blanco en animales, lo cual apoyaría la hipótesis obesógena. Sin embargo, para justificar los resultados experimentales, los autores necesitan invocar las denominadas dosis-respuestas no-monotónicas; es decir, que la acción de esos obesógenos no iría disminuyendo a concentraciones cada vez más bajas, como suele ser lo habitual, sino que, a partir de un determinado valor, esas sustancias podrían tener a bajas concentraciones un mayor efecto que a altas.

La naturaleza química de los compuestos obesógenos es otro de los puntos más llamativos de la hipótesis. Los 50 compuestos mencionados arriba también son posibles tóxicos a través de mecanismos de acción que nada tienen que ver con la obesidad. No se sabe si tras su absorción, y a las concentraciones fisiológicas en tejidos humanos, actúan realmente como obesógenos o no.

Además, resulta sorprendente que decenas de miles de moléculas de nuestro entorno natural, procedentes de animales, vegetales o minerales, nunca se hayan identificado como inequívocamente obesógenos, excluyendo los propios alimentos grasos o los azúcares. Tampoco se ha descubierto hasta ahora ningún compuesto sintético con una actividad claramente obesógena comparable a la que tiene el DNP arriba mencionado para la anorexia.

En fin, el tiempo dirá si la hipótesis obesógena va engordando o adelgazando, pero si os hacen un comentario impertinente acerca de esa barriguita que se adivina bajo el niqui, ahora tenéis algunos “químicos” a los que echar la culpa.

(*) El Prof. Jesús M. Aizpurua es un viejo amigo, al que llegué a dar clase en los primeros años de mi Facultad. Hoy es Catedrático de Química Orgánica en la misma. Un especialista en el diseño y la síntesis de nuevos compuestos mediante la llamada Click Chemistry, es un relevante científico de la UPV/EHU. Y un decidido emprendedor en la aplicación de su investigación, como lo demuestra el que sea el Director Científico de la empresa Miramoon Pharma S.L., entre cuyos productos se encuentra el novedoso candidato a fármaco PM-004, destinado al tratamiento no invasivo de la retinosis pigmentaria.

Leer mas...

miércoles, 27 de septiembre de 2023

Tablas de cortar alimentos y microplásticos

Hace unas semanas, una pequeña columna en el suplemento Vivir del Diario Vasco (y supongo que de otros periódicos de Vocento) alertaba de los peligros escondidos en algo tan habitual como cortar alimentos sobre una tabla de plástico. Según esos resultados, decenas de millones de partículas (o microplásticos) se desprenden cada año merced a esas operaciones, partículas que podríamos ingerir y así estar expuestos al riesgo de que (sic) “sean tóxicas”.

Como siempre en estos casos, este vuestro Búho se ha ido al artículo original, publicado en una conocida revista de la American Chemical Society (ACS), sociedad en la que tengo ya categoría de Emeritus (tras 40 años pagando la cuota anual). Y me he puesto a leerlo como si yo fuera uno de los referees (revisores) que tuvieron que dar el placet para que el artículo se publicara, una labor que he hecho durante años para las más importantes revistas de polímeros.

Ahora que ya estoy jubilado puedo decir que hacer de referee es un auténtico peñazo. Nunca me han pagado por ello, el editor que te manda el manuscrito lo quiere revisado para ayer y, muchas veces, eres un dudoso experto sobre la temática del artículo que te envían. Este no es el caso. No ha habido urgencias de editor alguno, vosotros me pagáis con solo leer esta entrada y de microplásticos tengo siempre hechos los deberes (la bibliografía actual). Así que vamos a darle una vuelta al artículo en cuestión.

Los autores del mismo ponen a seis ciudadanos con un cuchillo delante de tres tipos de tablas de cortar, dos de ellas de plásticos distintos (polietileno y polipropileno) y una tercera de madera. Les hacen ejecutar en cada tabla seis ciclos distintos, cada uno de ellos de 500 cortes, sobre las superficies en cuestión. Tras cada ciclo, pasan medio litro de agua por las superficies resultantes para recoger las partículas que se hayan podido desprender, filtran el líquido así obtenido, secan el filtro y pesan las partículas. Cuentan también esas partículas bajo un microscopio, caracterizan su forma, tamaño, etc.

Una de las cosas en las que siempre me fijaba al revisar un artículo era la bibliografía, al entender que, de alguna forma, las referencias allí listadas suponían puesta al día del estado de la cuestión sobre la que versaba el artículo. En este caso, y dado que se trata de una aportación sobre la cantidad de microplásticos que podemos ingerir a través de la alimentación, me ha sorprendido que entre las 91 referencias bibliográficas utilizadas, sólo dos (la 49 y la 74) sean publicaciones del grupo de Albert A. Koelmans de la Universidad de Wageningen en Holanda.

Además de haber publicado muchas contribuciones científicas sobre el tema, Koelmans coordinó un informe publicado en abril de 2019, encargado por la Unión Europea a la denominada SAPEA (un Consorcio que representa colectivamente a las Academias y Sociedades científicas europeas), en el que se abordaban los aspectos estrictamente científicos de los efectos de los microplásticos en el medio ambiente y en los seres vivos, incluidos los humanos. Además, y aún más importante en este caso, el grupo de Koelmans publicó un trabajo en marzo de 2021, que exploraba la bibliografía existente sobre la evaluación de la masa de microplásticos ingerida per cápita y día por niños y adultos, así como lo que ocurre posteriormente con esas micropartículas en nuestro organismo (cuántas partículas expulsamos, cuántas se acumulan, etc.). Un artículo que a mi me parece de referencia obligada y del que ya he hablado en este Blog.

Resulta sorprendente que aunque los autores citen ese artículo (referencia 49), no lo hagan en un contexto comparativo de sus propios resultados, sino para mencionar los posibles disruptores endocrino que los microplásticos pudieran contener en forma de monómeros y todo tipo de aditivos y que pudieran migrar de ellos a nuestro organismo en diversas condiciones. Y digo que resulta sorprendente porque el grupo de Koelmans ha demostrado, por activa y por pasiva en diversos trabajos (ver aquí el más importante), la irrelevancia de los microplásticos como vectores de ese tipo de contaminación química.

Volviendo a los resultados y ciñéndome, por no hacer esto muy largo, a los resultados obtenidos con las experiencias de corte sobre tablas de polietileno, las más habituales en muchas cocinas occidentales, los autores observan que el número y la masa de partículas que se desprenden parecen ir aumentando a medida que van pasando los 6 ciclos de 500 cortes que los cortadores ejecutan. Una conclusión aparentemente razonable pero que es bastante discutible cuando se ve el uso que de ella se hace.

Porque los resultados de esas medidas con los seis primeros ciclos se ajustan a una recta (regresión lineal) y gracias a ese ajuste, los autores van calculando el número y la masa de las micropartículas de plástico que, día a día, se irían generando desde el séptimo día hasta el tricentésimo sexagésimo quinto. Y luego suman los resultados de esos 365 días del año para calcular los microplásticos generados a lo largo de un año y a los que se supone estamos expuestos.

Es decir, con solo seis medidas experimentales (seis días), extrapolan a lo que, en principio, pasa en los 359 días del año restantes. Si algo he insistido siempre a mis estudiantes es que ojito con las extrapolaciones y más cuanto más lejos te vayas del intervalo medido. Sobre todo, en este caso, si consideramos la información suplementaria (por ejemplo la Tabla S10) que se suministra con el artículo y que casi nadie comprueba. Allí puede verse que los coeficientes de regresión distan mucho de un comportamiento lineal que permita extrapolación tan extendida. Algo más técnico y que para entenderlo hay que saber algo de estadística, pero ya sabéis que el Búho es de fiar y no os engaña.

Segundo, algo más de andar por casa y que mis amigos cocinillas pueden considerar. ¿De verdad ejecutamos 500 cortes sobre la tabla de cortar todos los días de un año?. En mi casa desde luego no. Ni por día ni, probablemente, por semana. Tercero, ¿todas las micropartículas generadas se adhieren inmediatamente a lo que cortamos y de ahí van a nuestro organismo?. Pues creo que tampoco. Por ejemplo, muchas de las cosas que en casa cortamos son verduras, una parte importante de las cuales cocemos en agua que luego en gran parte desechamos.

Así que su estimación de que al año estamos “expuestos” a entre 7 y 51 gramos de polietileno en forma de microplásticos provenientes del corte en tablas de ese plástico me parece una cifra excesiva. Ello implicaría entre 135 y 1000 miligramos por semana o, en términos de tarjetas de crédito (una “unidad de medida” que se ha hecho popular en la ingesta humana de microplásticos), entre 0.03 tarjetas o 0.2 tarjetas por semana, lejos de la tarjeta por semana que adujeron algunos en su día y que Koelmans y colaboradores desmontaban en el artículo arriba mencionado.

Pero, aún y así, si comparamos la ingesta diaria por persona que los autores calculan (entre 20 y 140 miligramos), eso supone entre 12.000 y 100.000 veces la media estimada por el grupo de Koelmans en su revisión. En la que, además, queda claro que una cosa es la ingestión diaria y otra cosa es la acumulación irreversible en el cuerpo humano de esas micropartículas en una vida media de 70 años. Que no llega a 40 nanogramos, porque la mayoría de lo que ingerimos se va por el váter.

Finalmente, el trabajo que estamos revisando críticamente evalúa también la posible toxicidad de esas partículas, realizando estudios in vitro con células de fibroblastos de ratón, no encontrando efecto adverso alguno. Pero el trabajo no estudia la toxicidad de las partículas desprendidas cuando se usan tablas de corte de madera, a pesar de que, en ese caso, se desprenden muchas más que desde una superficie de plástico, aduciendo simplemente que las de polietileno son las más habituales. Cuando está claro que de la tabla de madera surgirán, probablemente, fibras (polímeros) de celulosa y lignina que, en el caso de esta última, es una potencial fuente de sustancias que los químicos llamamos aromáticas (porque contienen anillos de benceno), en principio más peligrosas que las derivadas del polietileno.

Pero todo esto que acabo de decir son meras conjeturas que habría que comprobar. Lo que es definitivo es que si yo fuera el referee elegido por la revista de la ACS para evaluar el trabajo que nos ocupa, éste no pasaba el corte en primera instancia. Tendrían que aclararme los extremos que os acabo de contar

Y como hoy hace un día espectacular en Donosti y se me alegra el espíritu, os regalo un poco de música.

Leer mas...

Powered By Blogger