skip to main |
skip to sidebar
Como en muchos niños de mi generación, los primeros contactos con la Química se derivan de un repertorio de recetas vendido en forma de un laboratorio de juguete que me dejaba manejar cosas que son impensables que un niño de estos días pueda manejar. Lo que, en alguna ocasión, me dio más de un susto, en forma de pequeño incendio o de alguna herida, como la derivada de un experimento para fabricar pólvora. Pero si analizo bien la cuestión, es casi seguro que haya otro origen para mis devaneos con esta convulsa Ciencia. Mi padre, fallecido hace un par de años, era un personaje complejo pero, para lo que aquí nos interesa, un self-made man, un hombre de origen muy modesto que partiendo de chico de los recados acabó siendo el Gerente de una empresa relativamente grande dedicada al curtido de pieles. El producto final iba destinado a las suelas de los zapatos, una industria que floreció en el Levante español de los 50 y 60, donde casi en cada portal había un ciudadano/a con un troquel cortando suelas a partir de las pieles curtidas en Hernani y que acababan en las factorías de confección de los pares de zapatos.
La empresa estaba cerca de nuestra casa y como mi padre casi vivía en ella, muchos fines de semana sus hijos le acompañábamos y mientras él trabajaba en la oficina o supervisaba las diferentes secciones, nosotros correteábamos y curioseábamos entre los bombos de curtición (ver uno arriba), en las grandes tinajas de agua para el desalado de las pieles originales o en el almacén en el que los productos finales (los llamados crupones) se colgaban en el techo para su secado (ver a la derecha). Nos dejaban jugar con las máquinas de recortar esos crupones, nos dejaban conducir los grandes carros de transporte empleados para llevarlos hasta el almacén final y curioseábamos en un mugriento espacio llamado "el laboratorio". En fin, todo un disfrute para la chavalería y, otra vez, impensable para la de hoy en día. Y todo ello impregnado de multitud de olores agradables y desagradables que nunca se olvidan.
Contemplada con los parámetros actuales, los procesos que se llevaban a cabo en aquella empresa pueden conceptuarse como altamente contaminantes. A pesar de ser una industria que partía de un producto “natural” (en el caso que nos ocupa la piel de un animal vacuno) y que el curtido de pieles ha tenido una larga historia con el ser humano, lo cierto es que esos procesos, incluidos algunos tradicionales que se siguen utilizando en países menos avanzados, implican el uso de una variedad de sustancias químicas de origen natural o sintético así como una cantidad importante de agua que, en aquella época, se arrojaba a los ríos circundantes sin demasiadas restricciones medioambientales. Pero eso bastante habitual en la época en un pueblo como el mío, rodeado de papeleras, metalúrgicas y.... curtidoras (que había dos y casi juntas). Problema que sigue teniendo hoy vigencia en países como Marruecos, Pakistán o Bagladesh donde el curtido de pieles sigue haciéndose casi como hace siglos.
Tras despellejar al animal en el matadero, hay que preservar los pellejos resultantes para su transporte a la empresa de curtidos, ya que éstos tienden a deteriorarse rápidamente por acción de las bacterias. Es un proceso que hay que evitar drásticamente o, de lo contrario, la piel posteriormente curtida mostrará defectos, pequeños agujeros, etc. Para ello, los pellejos han sido tradicionalmente tratados en disoluciones de salmuera o apilados con sal seca distribuida entre pellejo y pellejo. En algunos casos se ha solido emplear naftaleno como preservante. Cuando los pellejos así tratados llegan a la empresa que los va a curtir hay que introducirlos en baños de desalado a los que se adicionan detergentes y bactericidas. El consumo de agua es, evidentemente, importante y, en aquellos años, una temporada de sequía podía parar literalmente la producción.
El siguiente proceso implica la eliminación del pelo de los pellejos. Para ello se emplean disoluciones de hidróxido cálcico, en muchos casos combinadas con baños de sulfuro sódico o hidróxido sódico. El pelo se suelta con este tratamiento y la piel resultante queda hinchada, lo que facilita el subsiguiente proceso de curtición. Pero, antes de ello, la piel se trata con cloruro amónico para eliminar la mayor parte del hidróxido cálcico proveniente de la fase anterior. El proceso es complejo y, si no está bien controlado, lleva a la aparición de gases como el amoníaco o el ácido sulfhídrico (el de los huevos podridos) que mi nariz y mi cerebro recuerdan muy bien en ciertas estancias de la fábrica.
Las especiales propiedades de la suela de cuero de un par de zapatos como Dios manda son debidas al colágeno, una compleja proteína a base de tres aminoácidos que forma la base en la que se sustenta el pelo del animal que acabamos de eliminar. En presencia de agua, las fibras de colágeno (un polímero, como habréis intuido) son relativamente ligeras y flexibles pero, como hemos dicho, son fácil blanco de las bacterias. Si se secan, son muy estables pero el cuero se vuelve muy rígido porque se forman enlaces de hidrógeno entre las fibras. Cuando las pieles están húmedas, las moléculas de colágeno también están unidas por enlaces de hidrógeno pero, en ese caso, implicando a los hidrógenos de las moléculas de agua, lo que les confiere una gran libertad de movimientos y una mayor flexibilidad. El proceso de curtido consiste básicamente en reemplazar las moléculas de agua por otras sustancias que den flexibilidad al cuero final y le defiendan contra ataques bacterianos. Son los tradicionalmente llamados curtido al cromo y curtido con taninos (o curtido vegetal). Yo he oído hablar de cromo y taninos mucho antes de tener ni siquiera una idea remota de la Química como Ciencia, por eso decía al principio que quizás mis orígenes anden por aquí.
El agente de curtido más extendido es el sulfato de cromo (III). El cromo proporciona a las pieles unas propiedades difíciles de conseguir por otras alternativas. Ello es debido a la capacidad de este sulfato para formar complejos más o menos voluminosos que, además, actúan como agentes de unión entre las cadenas de colágeno. Ello confiere a las pieles unas características especiales, llegando incluso a tolerar durante tiempos prolongados la acción del agua hirviendo. Lo malo de este proceso es que el cromo tiene una complicada segunda derivada. Aunque el cromo (III) no es tóxico, puede ser oxidado a cromo (VI), un bicho de cuidado, lo que complica mucho su empleo. De hecho, este enero de 2015, entra en vigor en la UE una norma que prohibe que en los zapatos que se vendan haya una concentración de cromo(VI) superior a 3 ppm.
La forma más antigua de curtir es el llamado curtido vegetal que emplea extractos de plantas extraídos de mimosas y otros árboles. Químicamente se trata de taninos o polifenoles del tipo del catecol o el pirogalol. Estos polifenoles reaccionan con las proteínas del colágeno para dar lugar a la unión entre cadenas. A diferencia del curtido al cromo, la cantidad de taninos implicada en estos procesos de reticulación de cadenas de colágeno es mucho más importante, lo que conlleva una reticulación más extendida y una mayor firmeza del crupón final, cosa que, a veces, plantea problemas para su uso en suelas de zapatos.
Los químicos (sobre todo los alemanes) han dado lugar a agentes sintéticos de curtido, los llamados syntans. Se trata de moléculas de un cierto tamaño, emparentadas con las resinas fenólicas. Como ellas, los syntanes se obtienen a partir de fenol y formaldehído, aunque el primero se trata previamente con ácido sulfúrico para obtener un fenol sulfonado.
Como podéis ver mucha química y mucho producto que hay que tratar con cuidado, ya sea de origen natural o sintético. Por eso, los procesos de curtido están siempre incluidos en todos los tratados de Química Verde, la estrategia que pretende diseñar nuevas alternativas a procesos industriales bien implantados pero con herramientas menos perjudiciales para el medio ambiente.
Y alguno se preguntará por qué no acabe yo de químico de aquella empresa. Pues no lo sé muy bien pero, en cualquier caso, fue una suerte. Las cosas, a finales de los setenta, fueron muy complicadas por estos lares y aquello acabó cerrando cuando yo era un imberbe licenciado.
Leer mas...
Los que me conocen y/o me leen y compraron el Diario Vasco el pasado sábado seguro que se acordaron de mi. Resulta que ese finde ha andado por Donosti, para asistir a un Congreso sobre Disfunción tiroidea y Déficit de yodo, el Catedrático de Radiología y Medicina Física de la Universidad de Granada Prof. Nicolás Olea. El DV del sábado contiene una entrevista de una página con él que desde el título ("Hay componentes en los plásticos asociados al cáncer y a la esterilidad") hasta la frase final ("Me he pasado a jabones sin parabenos, tiré las sartenes, me llevo la comida en tuppers de cristal, evito el microondas, cocino todo lo que puedo en acero inoxidable y no utilizo botellas de plástico si puedo") es un conjunto de opiniones, en muchos casos puramente personales, que ningún científico con renombre (como el Prof. Olea) debiera permitirse. Sobre todo cuando la entrevista (en la que evidentemente también interviene el tribulete de turno que puede haber sacado las afirmaciones "de contexto") contiene numerosas imprecisiones que, a lo único que llevan, es a que el personal se acojone más de lo que ya está con estas cosas.
Así que como el Diario Vasco no me va a conceder una entrevista para rebatir la suya, lo que podría hacer en virtud de mi similar condición de Catedrático de Universidad y la de veterano estudioso de los plásticos y, además, la experiencia me ha demostrado que escribir una Carta al Director a ese periódico es hacer oposiciones a la censura, no me queda más remedio que recurrir a esta vía que me pertenece para rebatir algunas de las ideas contenidas en la entrevista..
Vayamos con el asunto de las botellas para envasar agua, hoy en día fabricadas en su mayoría con un plástico conocido con la sigla PET (politereftalato de etileno). Sobre una de las afirmaciones resaltadas de la entrevista "no se deben reutilizar la botellas porque liberan tóxicos", ya escribí un largo post hace tiempo, pero para que no lo tengáis que volver a leer voy a resumir lo esencial y ponerlo además al día. La idea es muy antigua en la literatura e internet y básicamente viene a decir que no es bueno reutilizar botellas de agua de plástico porque en su reuso, y consiguiente envejecimiento, podemos provocar que, desde ellas, migren al agua sustancias perjudiciales para la salud. Las más citada (y con motivo) son el antimonio, el formaldehído y el acetaldehído. ¿Por qué hay esas sustancias en las botellas, aunque sea en cantidades muy pequeñas?. El antimonio proviene de restos del catalizador (trióxido de antimonio) empleado en la síntesis del plástico, mientras que los otros dos aldehídos son consecuencia de procesos de degradación que sufre el mismo, al someterlo a las altas temperaturas necesarias para moldearlo en forma de botella. Por tanto están ahí desde que la botella es botella y, nadie lo duda, pueden emigrar al agua, un asunto que los fabricantes conocen bien y que tratan de minimizar con nuevas estrategias.
Pero el antimonio es un elemento que está presente todos los días en nuestras vidas, no tanto por el agua embotellada que podamos beber como por la contaminación ambiental (lo contaba aquí junto con la curiosa historia del antimonio y Mozart). Es fácilmente excretado por nuestro organismo y para llegar a meternos en el cuerpo la cantidad diaria que inhalamos respirando el aire de nuestras ciudades, sería necesario beber mas de mil quinientas botellas diarias de agua conteniendo los niveles de antimonio que normalmente se suelen detectar en ellas. Sobre la segunda de las sustancias, el formaldehído, hay otra entrada, que podeis leer aquí si os place, aunque no tiene que ver específicamente con las botellas de agua. Dado que las conclusiones que pueden extraerse sobre el formaldehído, en lo relativo al consumo de agua embotellada, son de menor relieve que las que voy a exponer a propósito del malvado acetaldehído, nos centraremos en este último.
Las prevenciones sobre el acetaldehído surgen de su relación con el cáncer de boca y vías anexas como la faringe y el esófago. Hoy parece bien probado que ese tipo de problemas se deben, en una gran parte, a la ingestión de bebidas alcohólicas en general y a algunas en particular, como consecuencia de la concentración de acetaldehído inherente a la bebida y al que posteriormente se genera en la propia cavidad bucal por la acción de algunas bacterías sobre el propio alcohol. Algunas bebidas alcohólicas como el calvados contienen concentraciones de acetaldehído del orden de 100-200 ppm, mientras que en otras, como el vodka, es difícil detectarlo. El vino tinto anda por las 10-12 ppm y la cerveza por 5-6. Todo es cuestión de la materia prima (muchas frutas como la manzana del calvados o las uvas de vino ya contienen acetaldehído) y del proceso de elaboración.
Podemos comparar esos datos con los contenidos de acetaldehído en el agua embotellada. Entre ellos, he elegido este artículo de 2012, un exhaustivo trabajo sobre los productos químicos que pueden encontrarse en el agua embotellada en PET. En su Tabla 2, al final del texto, pueden verse las concentraciones medias medidas por diversos autores y que van desde cantidades inferiores a 5 ppb (o µg/L)) hasta algunas que pueden llegar a alcanzar 80 ppb, cientos y miles de veces inferiores, en cualquier caso, a las que se dan cuando nos bebemos una copa de Rioja.
Luego está el asunto de que la reutilización libera tóxicos. Pues ciertamente ha quedado claro que estas sustancias de las que hablamos pueden migrar. Pero la botella que compramos como nueva contiene el antimonio, el formaldehído y el acetaldehido que contiene por su propio proceso de fabricación y, a partir de ahí, el plástico no procrea esas sustancias. Desde luego en el caso del antimonio eso es indiscutible. Así que cada llenado y vaciado implica la salida de una cierta cantidad del mismo y, tras un cierto número de procesos, se acabará el antimonio para siempre. En el caso del formaldehído y el acetaldehído es verdad que pudieran surgir nuevas cantidades como consecuencia de procesos de degradación ulteriores a su fabricación, pero en las condiciones normales de empleo (generalmente las botellas están a temperatura ambiente o, incluso, en un frigorífico), ese proceso es prácticamente inexistente. Así que puestos a buscar "tóxicos" en la reutilización de botellas más vale que busquemos los derivados de una incorrecta limpieza que pudiera llenar nuestras botellas de agentes patógenos.
El artículo arriba mencionado es una buena fuente para contrastar la rotunda afirmación del Prof. Olea de que pueden emplearse hasta 600 sustancias diferentes en la fabricación de las botellas, lo que está en contradicción con una de las conclusiones del trabajo [El PET es es uno de los polímero que menos aditivos lleva]. El trabajo deja claro que, entre los aditivos que en él pueden encontrarse, no están disruptores hormonales como los ftalatos y el bisfenol A, sobre los que el Prof. Olea ha investigado mucho y bien. Y no se encuentran por la sencilla razón de que no se usan en la fabricación de ese plástico. Y si nuestras potentes herramientas analíticas los detectan a veces en determinadas aguas, no parece ser un problema debido al plástico sino, probablemente, ligado a procesos llevados a cabo en la propia planta de embotellado, como de alguna forma lo demuestra el hecho de que estas sustancias se detecten también en aguas embotelladas en VIDRIO. Otra posibilidad es que estén ya en el agua a embotellar, provenientes de la propia contaminación ambiental, lo que explicaría que trazas de esas conocidas sustancias aparezcan también en el agua de grifo de algunas ciudades.
Sin embargo, estoy de acuerdo con el Prof. Olea en que teniendo agua como la de Donosti es mejor beberla que comprar agua embotellada. Lo que resulta, además, particularmente sano para nuestra economía. Y si no, echen cuentas de lo que les cuesta un litro en el recibo de su compañía del agua y lo que les cuesta una botella. Se quedarán de una pieza. Pero...., yo también podría jugar al alarmismo con el agua de grifo. Bastaría, por ejemplo, con haber escrito en tono catastrofista la entrada sobre trihalometanos que escribí hace un par de semanas. O podría asustar al personal contando las dificultades que tienen las plantas de tratamiento de aguas para eliminar del suministro de agua potable los compuestos con actividad estrogénica. Y no sólo del bisfenol A que tan bien conoce el Prof. Olea, sino de los estrógenos naturales que se van con el pis de las señoras no menopaúsicas o de los estrógenos artificiales, como las píldoras anticonceptivas, que también acaban en las aguas residuales de las grandes ciudades en cantidades detectables (y me podría callar aquí lo de no peligrosas para la salud).
En su más que discutible argumentación contra las botellas de PET (que es un poliéster), la entrevista menciona que, una vez usadas, aquellas se reciclan y el poliéster resultante se emplea, entre otras cosas, para confeccionar prendas de vestir. Y cita un informe de Greenpeace sobre niveles de ftalatos en camisetas de Mickey Mouse que vende Disney. Aunque el informe Greenpeace no lo dice (al menos el que he visto yo) el Prof. Olea debiera conocer que los ftalatos de la camiseta de Mickey provienen de las imágenes embebidas en la camiseta, realizadas a base de un PVC flexible que si lleva ftalatos. Y no del poliéster que como hemos visto no tiene por qué contener ftalatos. Lo malo de desinformaciones como ésta es que la gente acaba pensando que TODOS los plásticos contienen ftalatos. Y nada más lejos de la realidad.
Otro punto importante es el asunto de las sartenes antiadherentes. Cito al Prof. Olea: "También hay componentes perniciosos en las sartenes. Ahora hay algunas que no llevan el denominado PFOA, que es lo que conocemos como teflón o el antiadherente". Literalmente incorrecto. El PFOA no es el plástico conocido como Teflón, material que proporciona a ciertas sartenes ese carácter antiadherente. El Teflón (o politetrafluoretileno) es un polímero o plástico, sumamente resistente al calor, los disolventes y los ácido o álcalis. Por el contrario, el PFOA (o ácido perfluoro octanoico) es una sustancia no polimérica que se emplea para facilitar el revestimiento con Teflón de las sartenes y que luego se elimina mediante un tratamiento con calor. La preocupación por el PFOA se inició al comprobarse que era una sustancia de gran ubicuidad (aparece en forma de trazas en la sangre de muchas personas), muy persistente y que parece inducir ciertos tipos de cánceres en animales. La EPA americana empezó hace años el seguimiento de la contaminación por esa sustancia, principalmente en núcleos de población próximos a las factorías que manejan PFOA en revestimientos y otros usos, ya que en la mayoría de ellas la sustancia se venteaba al aire circundante. Como consecuencia de esas acciones la EPA y los principales fabricantes de PFOA firmaron acuerdos para eliminar la fabricación y uso de esa sustancia antes de 2015. De hecho, desde 2012, la DuPont ya no emplea PFOA en el proceso de formación de los revestimientos de sus sartenes.
Así que el recubrimiento de las sartenes no contiene PFOA porque no se emplea (ni prácticamente lo contenía cuando si se utilizaba). Tampoco se produce durante el calentamiento de la sartén porque el Teflón aguanta muy bien hasta casi los 300ºC, una temperatura que no se alcanza en el utensilio a no ser que se deje descuidada en el fuego durante mucho tiempo. La propia EPA termina su lista de Preguntas frecuentes (FAQs) sobre Teflón y PFOA con una recomendación a la calma (The information that EPA has available does not indicate that the routine use of consumer products poses a concern. At present, there are no steps that EPA recommends that consumers take to reduce exposures to PFOA).
Y si rayamos ese revestimiento con el tenedor o al fregar no ocurre lo que el Prof. Olea dice: "cuando se gastan y se les va el plastiquillo y no sabemos dónde se ha ido, la respuesta es al ADN". Pues nos tendrá que explicar cómo porque el teflón, por aguantar, aguanta sin problemas el pH del ácido clorhídrico del estómago. Como aguanta disoluciones concentradas de ácidos tan corrosivos como el sulfúrico, el perclórico o el fluorhídrico. Así que lo más probable es que el "plastiquillo" en cuestión (me recuerda a lo de los hilillos del Prestige) salga de nuestro body tal y como entró.
Me han sorprendido también sus afirmaciones sobre los plásticos y el microondas. Tras mencionar al policarbonato y su empleo en la fabricación de biberones irrompibles, biberones que han desaparecido del mercado porque ese material se fabrica con el bisfenol A ya varias veces citado aquí, el Prof. Olea dice a continuación sobre el policarbonato lo siguiente: "Es un componente que hace que los plásticos sean más duros, que aguanten el calor y puedan meterse en el microondas". Para luego recomendar fervientemente no usar plásticos (otra vez en general) en los microndas. Si mis lectores interpretan lo mismo que yo, parece deducirse que el policarbonato está en todas las cosas de plástico que se meten en el microondas. Cuando la realidad es que los plásticos que actualmente han pasado los tests de las agencias para poder ser empleados en el microondas (algo que dicen las etiquetas y que os indican los que debéis usar) son materiales como el propio PET o el polipropileno que no contienen ni asomo de policarbonato.
Y aunque podía seguir con algunas cosas más, lo vamos a dejar aquí para que la entrada no sea muy larga. Aunque no debo dejar de decir que lo que más me ha molestado de la entrevista es un cierto tonillo descalificador sobre las decisiones de la EPA, FDA, EFSA, o agencias similares, que trabajan duro para establecer normas seguras para nuestra salud. Llegando a sugerir, incluso, que no toman las decisiones, que el Prof. Olea cree que se debieran tomar, porque hay grupos de presión industriales que influyen en esas decisiones. Algo de eso hay cuando uno estudia la historia de esas agencias pero, si no nos fiamos del trabajo duro y continuo de muchos profesionales en esas agencias, ¿a quién vamos a hacer caso?. ¿A las empresas que, usando este tipo de alarmismos, nos hacen un marketing perverso con productos "verdes", 0% algo o similares?. ¿A los grupos de investigación que, en muchos casos, mantienen su financiación gracias al interés mediático de los posibles daños a la salud de determinadas sustancias químicas?. No me hagais hablar más.
Leer mas...
Como ya he manifestado más de una vez en este Blog, soy consciente que muchos de mis seguidores más veteranos no están muy al loro de lo que se cuece en las redes sociales tipo Twitter o Facebook. Es por eso que, quizás, no se hayan enterando de la que se está organizando para la noche de este domingo, 7 de diciembre, a las 23 horas en la 2 de TVE. Se estrena un programa de ciencia, humor y escepticismo que responde al título de Órbita Laika. Si quereis más detalles de lo que ahí se va a ventilar podéis ir a esta página de la propia TVE.
Pero en esta salsa también ha estado metido vuestro Búho aunque, como siempre, de forma discreta. No me quedó otra opción que aceptar el reto de mi antiguo Rector, Iñako Pérez Iglesias, Director de la Cátedra de Cultura Científica de la UPV/EHU. Cuando uno mantiene una buena relación con uno de sus ex-Rectores y éste le pide colaboración, no queda sino cuadrarse y empezar a trabajar (no vaya a ser Rector otra vez, que todo puede pasar en este mundillo). Así que acabé entre las bambalinas de una de las secciones de Órbita Laika (cortita pero intensa), en la que intervienen dos buenos amigos, dos auténticos fenómenos (nada de cracks, eso para los yankis), Xabi Gutiérrez, del Restaurante Arzak, del que varias veces os he hablado aquí, y José Manuel (Jose para los amigos) López Nicolás, un profesor de Bioquímica de la Universidad de Murcia, del que he hablado menos pero sólo porque hace menos que le conozco.
No tengo detalles del resto de secciones, pero con ésta os vais a divertir. Como nos divertimos los dos protagonistas, el guionista del programa, el productor, los técnicos de la grabación, Lola (la chica de Xabi), Pablo (un joven cocinero de Arzak) y un servidor, al grabar, en los altos de Miramón (Donosti), los doce episodios que, semanalmente, se irán ofreciendo. Si quereis ver, en primicia y antes del domingo, uno de los vídeos (2 minutos cuarenta segundos) no teneis más que pinchar aquí.
Leer mas...
Hace unas cuantas entradas os contaba la historia de la cloración del agua potable, como respuesta del mundo civilizado a los crecientes problemas que, en el suministro de este bien imprescindible, estaban causando las grandes aglomeraciones urbanas que habían ido apareciendo desde el siglo XVIII. Quedaba claro que estos métodos fueron los causantes de la práctica desaparición de las periódicas epidemias que asolaban a esas grandes urbes, consecuencia del mal estado sanitario de las redes de agua potable. Y terminaba la entrada con una referencia a los recelos y miedos que estos tratamientos parecen inducir en la fracción más quimiofóbica de la sociedad. Recelos y miedos que se suelen concentrar, en las redes y en los medios, en una familia de sustancias químicas conocidas como Trihalometanos, sobre los que prometía una entrada. Pues aquí está, tanto porque creo interesante poner las cosas en su sitio (desde mi punto de vista) como de relataros algunas curiosas historias que sucedieron durante el descubrimiento de estas sustancias.
En este Blog he hablado más de una vez de la cromatografía de gases y de alguno de sus componentes esenciales como los detectores. No es cuestión de entrar en datos técnicos pero si diré un par de cosas a modo de recordatorio. La cromatografía de gases, al igual que la cromatografía líquida, es una técnica que permite separar y cuantificar sustancias químicas, con independencia del medio en el que se encuentren (aire, aguas de todo tipo, alimentos, fluidos vitales, etc). Los niveles de detección varían en función de la sustancia a detectar y del detector que se acopla al cromatógrafo (así se llama al aparato) pero actualmente podemos llegar sin mucho sudor al nanogramo por litro, es decir, 0,000000001 gramos/L. Y seguimos bajando. En analogía a la llamada ley de Moore sobre el número de transistores en los microchips, los límites de detección de nuestras técnicas instrumentales caen tres órdenes de magnitud (mil veces) cada 25 años.
En las entradas que arriba se mencionan, puede comprobarse que la cromatografía de gases jugó un papel fundamental en los años sesenta en el asunto del DDT del que hablábamos en la entrada anterior, al permitir detectar de forma eficaz muchas sustancias que, hasta entonces, se escapaban a las técnicas analíticas rutinarias empleadas, que eran "ciegas" a cantidades de esas sustancias en diferentes medios que hoy consideramos muy peligrosas para la salud.
Y vayamos con la historia de los THMs. En el año 1974, dos jóvenes científicos enrolados en la organización llamada Environmental Defense Fund, nacida al calor del famoso libro de Rachel Carson "Silent Spring", publicaron en el magazine Consumer Report una serie de artículos titulados Is the water tap safe to drink?, cuestionando con ese título la seguridad de beber agua de grifo. Su tesis era que el agua potable de muchas ciudades americanas, y particularmente la de Nueva Orleans que tenían más estudiada, contenía cantidades importantes de sustancias químicas que podían ser cancerosas para los ciudadanos. Y de hecho, había algunos estudios epidemiológicos que mostraban indicios de incidencias de cáncer mayores en algunas de esas poblaciones. Los artículos mencionados no eran sino el reflejo de una creciente preocupación que se estaba dando a ambos lados del Atlántico como consecuencia de una serie de evidencias que se estaban acumulando en las revistas científicas.
Johannes Rook era un químico que había trabajado para la compañía cervecera Amstel, antes de prestar sus servicios en la Rotterdam Water Works. Rook había usado con éxito en la compañía cervecera una curiosa argucia para identificar y cuantificar ciertos aromas indeseados en esa bebida. En lugar de introducir una muestra de la misma en el cromatógrafo, Rook capturaba y analizaba la zona gaseosa que se acumula por encima del líquido en las botellas. Para ello utilizaba un aditamento acoplado al cromatógrafo de gases conocido como Head-Space (Espacio de cabeza) que éste vuestro Búho también ha utilizado aunque para otros usos. Rook trasladó la técnica de su ámbito cervecero al del análisis del agua de Rotterdam y descubrió, en 1971, que uno de los componentes más habituales en el agua de grifo de esa ciudad era el cloroformo, un compuesto muy volátil y al que se podían atribuir algunos de los casos de cáncer antes mencionados. Similares resultados, en la misma época y de forma independiente, se obtuvieron en los laboratorios de la Environmental Protection Agency (EPA)americana por otro químico llamado Thomas Bellar.
Pero para sorpresa de algunos, el cloroformo estaba presente en prácticamente cualquier agua potable que se analizara, con independencia de que su origen fueran o no fuentes susceptibles de ser contaminadas por vertidos industriales, así que había que buscar otra explicación y Rook la tenía. En el verano de 1974 explicó a su amigo James M. Symons, Director de la División de la EPA encargada de los asuntos del agua potable, que el cloroformo y otros primos como el bromoformo, el diclorobromometano y el dibromoclorometano que, englobadamente llamaremos Trihalometanos (THMs), eran la consecuencia de la reacción del cloro empleado en las plantas de tratamiento de agua con la materia orgánica natural existente en ella (los llamados ácidos húmicos y fúlvicos, fundamentalmente). El impacto de la revelación de Rook fue tal en su colega americano que lo trasladó inmediatamente a la EPA y entre estas cosas y otras que se andaban publicando, en pocos meses, el presidente amaricano Ford firmó la llamada Safe Drinking Water Acta que, por primera vez, regulaba en su territorio los niveles de concentración de muchas sustancias químicas en el agua potable.
Aunque esto se está haciendo largo, la historia no acaba aquí. En los años ochenta se empezó a analizar el carácter mutagénico y cancerígeno de muchas sustancias químicas mediante el sencillo, barato y eficaz test de Ames. Estudios que vinieron a demostrar, de forma concluyente, que había una relación entre el carácter mutagénico del agua potable y su previo tratamiento por cloro, así como con la concentración de éste. Pero ese carácter mutagénico no podía atribuirse sólo a nuestros THMs. Como he mencionado arriba, se trata de sustancias volátiles (por eso las detectaba Rook en el espacio de cabeza). Y precisamente por ser volátiles desaparecen prácticamente del agua durante la preparación de las muestras para el test de Ames. Así que hubo que buscar en el agua compuestos menos volátiles que los THMs para descubrir a los culpables de, al menos, una parte de los resultados del test de Ames. Y así aparecieron los ácidos haloacéticos, moléculas derivadas del ácido acético del vinagre, al sustituir uno o varios hidrógenos por cloro en virtud del tratamiento del agua.
Pero la cosa no ha quedado tampoco ahí y hoy sabemos que los subproductos de la reacción del cloro con la materia orgánica presente en el agua pueden ser muchos (y todavía bastantes de ellos permanecen sin identificar por las bajísimas concentraciones en las que se encuentran). Y que hay algunos, como el denominado Mutágeno X (MX), un acrónimo para denotar a un compuesto cuyo nombre completo es ácido (Z)-2-cloro-3-diclorometil-4-oxobutenoico, que, probablemente, es el potencialmente más cancerígeno de los hasta ahora identificados en las plantas de tratamiento de agua con cloro. Aunque un estudio de la Organización Mundial de la Salud en 2004 dejaba claro que, a los niveles que hoy lo podemos detectar, su sola detección no es causa de alarma. De hecho está a tales niveles que incluso esa detección resultó al principio muy complicada para muchos laboratorios.
La preocupación por las consecuencias del tratamiento de agua con cloro ha hecho que se ensayen otras alternativas como la llamada cloramina, basada también en cloro aunque en menos cantidad, al que se adiciona amoníaco. O la ozonización, que implica el tratamiento sanitario del agua con ozono, un gas. O el tratamiento con dióxido de cloro (incidentalmente, una sustancia cuyas disoluciones se están vendiendo en internet casi como agua milagrosa). Ninguna de estas soluciones está exenta de generar similares subproductos, algunos de los cuales son también cancerígenos. Por ejemplo, la cloramina genera, entre otros muchos productos, N-nitroso dimetil amina (NDMA), aún más cancerígena que el misterioso MX. Pero, aún y así, en las concentraciones que normalmente se detecta y tomando agua con esa concentración todos los días de nuestra vida, el riesgo de contraer un cáncer sólo se acrecienta en un factor de uno en un millón. Para terminar, y en plan escatológico, os contaré que hace poco leía un artículo [Environ. Sci. Technol. 2014, 48, 3210-3217] sobre lo peligroso que resulta ser un guarro en la piscina. La orina y el sudor, en contacto con el cloro, generan subproductos nitrogenados que todavía no se han investigado en detalle sobre su peligrosidad.
Ya sé que no voy a convencer a quien piense que lo que hay que hacer es no usar cloro en el tratamiento de aguas, en virtud del llamado principio de precaución. Pero la solución, a mi entender, no puede ser tan radical y para ello basta sólo con echar la vista atrás y comprobar la situación de la que partíamos, que yo relataba en la entrada anterior sobre los tratamientos del agua, mencionada al principio de este post. Yo, al menos, confío en las estrategias que hemos seguido hasta aquí y que sólo pueden mejorar (nuevas técnicas instrumentales, nuevas regulaciones, cada vez más potentes las unas y más estrictas las otras), así como en las Agencias que las implementan. Y si las trazas de esas sustancias químicas oscurecen vuestro raciocinio, pensad en que los patógenos que el agua puede contener (por ejemplo por no lavar convenientemente los recipientes en los que la almacenamos) son todavía mucho más peligrosos para la salud. Aún hoy, y debido fundamentalmente al contagio entre personas y a través de alimentos, en USA se dan anualmente más de 26 millones de episodios de gastroenteritis, con más de 150.000 hospitalizaciones y más de 3.000 muertes. Virgencita, Virgencita.....
Leer mas...