jueves, 31 de octubre de 2019

Ostras y un esquivo colorante azul

Llevo un año que no dejo de meterme en "líos" que alteran la que se supone tranquila vida de un jubilata. Pero disfruto con ellos, sobre todo por la variedad de cosas que aprendo. Andaba yo el pasado setiembre preparando una estancia con la Búha en la zona de La Toja, en Galicia, cuando recibí una llamada de un conocido cocinero donostiarra (Pedro Subijana de Akelarre) que me pedía que echara un ojo a una presentación sobre ostras que iba a hacer, semanas mas tarde, en el San Sebastián Gastronomika de este 2019. Le advertí desde el principio que un servidor de ostras sabe poco, por no decir nada, ya que después de un susto con almejas crudas hace años, huyo de los bivalvos en estado puro como de la peste. Y que, además, desde el punto de vista de mi formación académica poco podía aportar. Pero que era un honor que me confiara el borrador y que trataría de contribuir en algo. Y así me metí en un atractivo lío que me tuvo muy entretenido durante mi estancia en La Toja y días después.

El borrador que me hizo llegar Pedro Subijana contenía, evidentemente, aspectos gastronómicos relacionados con las ostras en los que, obviamente, había poco que discutir. Pero había un apartado relacionado con las diversas causas por las que consumir ostras crudas puede resultar peligroso, apartado que había sido elaborado por alguien del Centro Tecnológico AZTI, un referente cercano en todo lo que tenga que ver con el mar. Así que había información más que suficiente para los propósitos de una ponencia dirigida básicamente a cocineros. Pero aún y así, algo le hice llegar, tras buscar y leer literatura científica, en relación con las biotoxinas químicas generadas por las llamadas floraciones nocivas de algas, un tema que bien merecería una entrada en el Blog por aquello de lo "naturales" que son aunque nos puedan producir serios problemas si las ingerimos entre la carne de las ostras que las han filtrado. También profundicé y aporté algo en temas que me son más próximos, como los relacionados con la posible presencia en las ostras de metales pesados o contaminantes orgánicos persistentes (como el DDT, las dioxinas o los bifenilos policlorados) que los humanos hemos puesto en el mar. Pero lo que más me llamó la atención en mis lecturas (y a ello voy a dedicar la entrada) tiene que ver con un particular colorante azul que hace que un tipo de ostra francesa se haya puesto de moda entre los mejores gastrónomos.

Porque, como no podía ser de otra manera, las ostras de las que Pedro iba a hablar no son unas ostras cualquiera. Son las únicas ostras francesas (y mira que hay donde elegir) que tienen la llamada Indicación Geográfica Protegida (IGP) bajo la denominación Huîtres Marennes Oléron. La peculiaridad de estas ostras es que, tras ser criadas de la manera habitual, ya sea en parques de otras regiones francesas o en la propia región del Marennes, los bivalvos son sometidos a un proceso de refino (la palabra francesa es affinage), en una especie de piscinas arcillosas situadas en terrenos de unas antiguas marismas saladas reconvertidas. Esas piscinas se llaman en francés claires y tienen la peculiaridad de que se llenan con agua de mar en cada marea y, cuando esta se retira, el lugar (y las ostras allí depositadas) se quedan en contacto con el agua remanente. En esas condiciones y bajo la acción de la luz solar, se produce un rápido desarrollo de fitoplacton del que las ostras se alimentan, lo que les confiere unas peculiaridades organolépticas y un aspecto físico que las hacen únicas.

De las cuatro variedades de ostras que se producen gracias a ese proceso de refino en las claires, la que me interesa para esta entrada es la que se conoce bajo la denominación fine de claire verte. Estas ostras se alimentan durante su estancia en las claires de una microalga conocida como Haslea ostrearia, lo que les confiere el espectacular color verdoso que se muestra en la fotografía que ilustra esta entrada y que, como siempre, podéis ampliar clicando en ella. Y todo gracias a que las Haslea ostrearia son capaces de generar un colorante de color azul que se bautizó con el nombre de Marennina. No hace falta ser muy listo ni de Ciencias para relacionar el origen del nombre con la zona de producción de las ostras que nos ocupan.

A pesar del color azul de los océanos que llenan nuestro planeta, ese color no es causado porque en el agua del mar se encuentren disueltas sustancias de color azul. De hecho los organismos y las sustancias de color azul existentes en ese mismo medio marino son bastante raros si se los compara con los de otros colores. Todo ello por una serie de razones que implican electrones, orbitales moleculares y otras cosas con las que no os voy a aburrir. Dejémoslo, simplemente, en que el color azul es raro en la Naturaleza en general y en el mar en particular y que, cualquier fuente que nos lo proporcione, debe considerarse en detalle ante las perspectivas de hacer un buen negocio, pues facilitaría su uso en productos demandados en ámbitos como la cosmética o los colorantes alimentarios, donde los azules que se emplean son pocos y algunos con no buena fama. Así que la marennina, una fuente natural de color azul, generada por un tipo de alga, ha interesado desde hace tiempo y sigue interesando, como lo demuestra un proyecto europeo que bajo el nombre GHaNA se está desarrollando en el marco del Programa Horizonte 2020.

Gracias al proyecto y a otro anterior (BIOVADIA), en el que se han integrado equipos de diferentes países, se han identificado, en diversas localizaciones geográficas, otras algas de la familia de las diatomeas que, además de la Haslea ostrearia, también generan marennina. Por otro lado, en el marco de ambos proyectos, se ha demostrado también que la marennina tiene propiedades antiinflamatorias, antibacteriales y antivirales, lo cual podría tener potenciales usos en el ámbito de la medicina. Pero esas mismas propiedades también resultan de interés en el cultivo de ostras y podrían tener algo que ver en que las originarias de Marennes-Oléron mantengan una cierta resistencia a virus y bacterias. Lo que serviría para prevenir en cierta medida (que hoy por hoy no sabemos valorar) algunas de las intoxicaciones provocadas por ingestión de los bivalvos crudos. Por ejemplo, este mismo año se ha publicado un artículo que estudia la posible acción de la marennina contra bacterias del género Vibrio, unos microorganismos que están en el origen de algunas de las intoxicaciones más graves que pueden producirse por ingestión de ostras crudas.

Pero para poder ser utilizada como sustancia pura en formulaciones médicas y cosméticas, e incluso para emplearse como medida sanitaria en criaderos de ostras, el primer paso necesario es el aislamiento de la marennina pura y su completa caracterización desde el punto de vista químico y toxicológico. Y ahí es donde la sustancia en cuestión se está mostrando particularmente esquiva a los investigadores. A pesar de las sofisticadas técnicas instrumentales empleadas en los mencionados proyectos, los investigadores no han llegado más allá de atribuir a la marennina una compleja estructura química en la que se han identificado ciertos grupos glucosídicos unidos a uno o varios anillos aromáticos. Y mientras esa estructura no se resuelva (ni siquiera sabemos si es una sola molécula o una mezcla), no vamos a poder asegurar que extraemos marennina pura de las algas, para que se puedan hacer con ella las pruebas requeridas por las autoridades sanitarias competentes, de cara a su empleo ya sea como aditivo alimentario, como componente de cosmética o como bactericida en el cultivo de ostras.

Así que, por el momento, el colorante amigo de las ostras de Marennes-Olerón va a encontrarse con muchas dificultades para poder ser comercializado con esos fines, por mucho que provenga de algas presentes en la Naturaleza y sea soluble en agua, lo que evita el uso de disolventes en su aislamiento.

Y a los que os gusten las ostras, este vuestro Búho no os va a asustar desde esta tribuna para que no las consumáis pero, después de haber leído lo que he leído, conmigo no contéis.

Leer mas...

miércoles, 16 de octubre de 2019

Popeye, espinacas y músculos

No es la primera vez que hablamos de Popeye. En una entrada de 2015 y a propósito de mis repetidos cálculos renales, se contaba aquí que el que las espinacas de nuestro personaje se vendan como una excelente fuente de hierro era un auténtico bulo. Os contaba además que, aparte de que el origen de dicho bulo estaba en un error de unos investigadores al colocar la coma de un dato analítico en lugar indebido, está el hecho de que las espinacas contienen mucho ácido oxálico, que actúa como secuestrante del hierro y hace que el contenido real del mismo en nuestro organismo sea poco relevante. Y tirando del oxálico llegábamos a sus sales, los oxalatos, que son los que nos han hecho ver las estrellas a los que hemos generado alguna vez cristales de los mismos en nuestro riñón, al quererlos expulsar a través de nuestro uréter.

Pero relacionado con las bondades de las espinacas en el aspecto físico de Popeye, parece evidente que las imágenes de sus comics asocian consumo de espinacas con unos potentes biceps en sus brazos. No en vano, cada vez que Popeye tenía que dar un contundente puñetazo para rescatar a su chica de los malos, abría una lata de espinacas y se la echaba al coleto sin necesidad siquiera de quitarse la pipa de la boca. Parece ya claro con mi entrada anterior que las protuberancias de sus brazos no eran debidas al hierro. Pero esta misma semana, leyendo el Chemical Engineering News (CEN), me he enterado de que igual hay otra posible explicación para el asunto.

Tengo que reconocer, antes de contaros la historia, lo que me asombra la capacidad de los redactores de noticias cortas del CEN (como la autora de la sección Newscripts en el número de esta semana, Marsha Ann Watson) para descubrir, enterrados en la maraña de sofisticados artículos científicos, detalles que, convenientemente explicados, llamen la atención de químicos ociosos como un servidor.

Resulta que investigadores alemanes, italianos y australianos han publicado recientemente un artículo en la revista Archives of Toxicology, [Arch. Toxicol. 93, 1807-1816 (2019); DOI:10.1007/s00204-019-02490-x] que trata sobre Ecdiesteroides como agentes anabolizantes no convencionales y, más concretamente, sobre la mejora del rendimiento muscular mediante el consumo de un miembro de esa familia, la ecdiesterona. Aunque es verdad que con lo de esteroides uno empieza a tener una pista que conduzca a los biceps de Popeye, lo cierto es que la cosa queda más clara cuando los autores, en el procedimiento experimental, nos hacen saber que, en su estudio, se ha utilizado un suplemento alimenticio comercial cuya etiqueta reconoce que contiene 100 miligramos de ecdiesterona, "obtenida a partir de un extracto de espinacas".

Trabajando con una serie de atletas voluntarios, los investigadores encontraron que el grupo al que se le había administrado el suplemento derivado del extracto de espinacas, mostraban un incremento apreciable tanto en su masa como en su potencia muscular en comparación con otro grupo al que se le administraba un placebo. Como consecuencia de ello, los autores han propuesto a la Agencia Mundial contra el Dopaje que incluyan la ecdisterona en la lista de sustancias prohibidas.

Me lo tengo que estudiar más despacio. Dice la Búha que ando mal de tono muscular y quizás con ese suplemento lo arreglaría. Sin miedo al oxálico y sus oxalatos, que se habría eliminado, supongo, en el proceso de extracción.

Leer mas...

lunes, 30 de septiembre de 2019

Agua y campos de golf

Hace ya demasiado tiempo (nada menos que en marzo de 2007) publiqué en el Blog una entrada sobre el impacto ecológico de los campos de golf. Era una época en la que por toda España y, particularmente, en ciertas regiones y provincias mediterráneas, los campos de golf aparecían como setas, siempre acompañados de urbanizaciones, cada una de las cuales podía dar albergue a cientos de personas. Desde entonces, y tras la crisis económica, decenas de esos desarrollos se han quedado sin terminar o sin vender. Cuando releo la entrada, veo que la mayor parte de los argumentos se mantienen bien con el tiempo y no necesitan revisiones de relieve pero hete aquí que las circunstancias hacen que "necesite" escribir una nueva sobre el tema, por razones que vais a entender inmediatamente.

Esta entrada se la "debo" a una persona a la que no conozco de nada y que, recientemente, publicó en Twitter los dos tuits que veis en la cabecera (he borrado el nombre de la autora). Ya el primero y el texto que lo acompaña en el recuadro en blanco encendieron todas mis alarmas. Poco después llegó el segundo, que todavía era más "atractivo" en su conclusión: Los campos de golf en España consumen más agua que todos los españoles juntos. Así que investigué sobre la autora y descubrí que parece ser una buena seguidora y consumidora de la divulgación científica que se hace en España (se ha forrado a ver, por ejemplo, los vídeos de las intervenciones en el reciente Naukas Bilbao 2019). Pero aquí no ha usado buena información.

En su bio, y aparte de otros términos, se define como "ex-matemática" y, quizás, en ese abandono de las matemáticas debe estar el origen de lo mal que ha hecho las cuentas que han dado lugar a su dislate. En el que no habría incurrido si hubiera considerado seriamente el texto de la nota que aparece bajo su primer tuit, del que no cita la fuente y que os transcribo, porque creo que no se va a leer bien clicando en la figura que ilustra esta entrada. Dice allí que "el consumo de un campo de golf de 18 hoyos y 60 hectáreas es de 10.000 metros cúbicos por hectárea, es decir, 18 hectómetros cúbicos cada año". O sea, que quien haya escrito eso ha multiplicado el consumo de agua por hectárea por.... el numero de hoyos (!!!) y no por el de hectáreas, como correspondería. Además, 18 por 10.000 metros cúbicos son 180.000 metros cúbicos o, lo que es igual, 0,18 hectómetros cúbicos y no 18 (¡cien veces más!), como dice la nota.

Para refutar las conclusiones de sus tuits, me voy a basar, en primer lugar, en la información que recibo regularmente, y desde hace muchos años, de mis amigos Javier Ansorena y Domingo Merino, dos personas que, a partir de los años ochenta y tomando como referencia los usos y prácticas de la estación inglesa de Rothamsted, revolucionaron el agro guipuzcoano. Pero ambos han tenido otra pasión: los céspedes deportivos, ámbito en el que Domingo Merino, ya jubilado, sigue colaborando con clubes de fútbol y golf en el mantenimiento e innovación de sus cubiertas verdes. La entrada de 2007 era, en realidad, un condensado de las ideas de ambos amigos, plasmadas en un artículo que menciono abajo en primer lugar. También emplearé datos del Instituto Nacional de Estadística (INE), de la Real Federación Española de Golf (RFEG) y de un informe que la consultora PwC España realizó para la empresa Acciona hace poco. Esas y otras fuentes aparecen más detalladas al final de la entrada.

El consumo de agua en España, según el estudio de PwC, ha oscilado en los últimos años en torno a los 35.000 hectómetros cúbicos anuales. El sector que más agua consume en España es la agricultura con un 67%, seguido de los grandes grupos industriales con un 19% y el 14% restante, esto es 4.900 hectómetros cúbicos anuales, se destina a diversos usos que podemos llamar urbanos.

Esos 4.900 hectómetros cúbicos anuales que corresponden al sector urbano se distribuyen, de nuevo según PwC, en una serie de subsectores. El llamado Hogares supone el 71% de ese consumo (3.480 hectómetros cúbicos). La pequeña industria y la construcción se llevan el 11%, los consumos municipales el 9%, las prácticas de corte agrícola en esos municipios un 1% y el 8% restante (392) es atribuible a Actividades y Servicios de tipo turístico, como gestión de Hoteles, Balnearios y, por supuesto, los alrededor de 420 campos de golf federados de diverso tamaño existentes en España, la mayor parte de ellos radicados en la Comunidad Valenciana, Murcia y Andalucía.

El consumo de agua de un campo de golf de 18 hoyos (que son la mayoría, aunque el segundo tuit parezca indicar lo contrario) es muy variable en función de muchos factores, como la pluviometría del lugar (no es lo mismo un campo en Almería que mi Basozábal en Donosti), del tipo de hierba que se haya plantado, de la extensión y gestión del campo, etc. Pero, creo haber llegado a unos valores medios razonables, usando las fuentes abajo citadas y las consideraciones que os enumero a continuación:

1. Un campo de golf se asienta en fincas de variado tamaño, dependiendo del entorno geográfico de cada campo y de que tenga 9, 18 o más hoyos. Garcia Ircio, en su libro abajo citado, establece un valor medio en torno a unas 45 hectáreas. Pero, para empezar, hay que dejar claro que, de ellas, solo se riegan, cuando es necesario, las áreas realmente de juego, es decir, las calles, por las que vamos avanzando desde la salida hasta el hoyo, y los greenes, territorios reducidos en los que se localiza el pequeño agujero en el que hay que meter la bolita.

2. Según puede verse en la reciente evaluación (2019) de la Real Federación Española de Golf (RFEG), cuyo enlace aparece abajo, los campos del Norte de España, como el mío, pueden utilizar entre 50.000 y 75.000 metros cúbicos de agua de riego por año, mientras que los de la España seca pueden llegar a 300.000 o más. Tirando por alto para favorecer las tesis de la tuitera, usaremos, como media de riego anual, esos 300.000 metros cúbicos o 0,3 hectómetros cúbicos. Con ese dato en la mano, podríamos estimar el consumo global por año de los campos de golf españoles en unos 126 hectómetros cúbicos (300.000 por 420 campos y dividido por un millón), un 0,36% de la totalidad de agua consumida anualmente en España por todos los sectores (agrícola, industria y urbano).

3. A la hora de comparar consumo de agua en campos de golf con consumo de agua potable en nuestras ciudades, la misma evaluación de la RFEG indica que más de la mitad del agua empleada para regar campos de golf, concretamente el 57%, es agua reciclada, obtenida a partir del tratamiento de aguas residuales y no apta para consumo humano. Así que el agua potable que los campos de golf emplearían se quedaría en unos 54 hectómetros cúbicos (el 43% de los 126 del párrafo anterior), un 0,15% total del consumo de agua en España y un 1,55% del agua consumida anualmente por los hogares españoles. Y esto sin tener en cuenta otras posibles fuentes de agua de riego de la que puedan disponer los campos, como el agua de lluvia que puedan recoger en los lagos artificiales, estratégicamente situados para incordiar al golfista, el agua de acuíferos propios, etc. Pero volvamos a dar números que favorezcan a la tuitera y estimemos que los campos de golf pudieran llegar a consumir hasta 54 hectómetros cúbicos de agua tan potable como la de nuestro grifo.

4. Según el Instituto Nacional de Estadística, un español medio consumía en 2018 en torno a los 137 litros diarios de agua. Lo que se traduce en unos 50.000 litros anuales (50 metros cúbicos). Así que para llegar a los 54 hectómetros cúbicos que puedan consumir TODOS los campos de golf españoles necesitamos una población de algo más del millón de habitantes. Es decir, la totalidad de los campos de golf NO consumen tanta agua como todos los españoles juntos, como dice el segundo tuit, sino que consumen el equivalente a un colectivo de UN millón de españoles. Y, desde luego, si habéis seguido mis cuentas, UN campo de golf NO consume más agua que todos los habitantes de Burgos, con una población en torno a los 180.000 habitantes. Necesitaríamos juntar el consumo de unos 80 campos de golf de 18 hoyos para igualar las cifras.

Terminaba yo la entrada de 2007 recomendando a mis lectores que se dieran una vuelta por campos de golf como los mencionados en ella (sin urbanizaciones adyacentes o, en su caso, pequeñas) o por la veintena de ellos que la Búha y este vuestro autor tenemos en un radio de una hora de coche al otro lado de la frontera con Francia. En casi todos los casos, y en otros de otras regiones, hay ejemplos de campos situados en entornos idílicos y sostenibles (algunos datan de principios del siglo XX), donde la naturaleza se preserva en toda su variedad y esplendor. Si alguno de los lectores de esta nueva entrada necesita información sobre dónde encontrar alguno cerca de su domicilio, no tiene más que preguntarlo. Y si la autora de los tuits se da una vuelta por Donosti estaré encantado en invitarle a comer y mostrarle mi campo.

Fuentes:

Javier Ansorena y Domingo Merino, Golf y desarrollo sostenible, Federación Vasca de Golf (2007). Enlace.

Césped deportivo. Diego J. Peñapareja, Domingo Merino y Javier Ansorena. Mundi-Prensa (2017) y comunicaciones privadas de D. Merino.

El swing del agua. Francisco J. Garcia Ircio. Federación de Golf de Castilla-La Mancha (2008).

Estadística sobre el Suministro y Saneamiento del Agua (2016). Instituto Nacional de Estadística. Noviembre de 2018. Enlace.

La gestión del agua en España. Análisis y Retos del Ciclo Urbano del agua. PwC (2018). Enlace.

El uso del agua en los campos de golf de España. Real Federación Española de Golf (2019).
Enlace.

Leer mas...

lunes, 23 de septiembre de 2019

Vapeando peligrosamente

En este Blog y desde 2008 ya hemos hablado varias veces sobre los cigarrillos electrónicos, en un intento de ir siguiendo la evolución de este producto emergente de interesante Química en su concepción. Cada vez que he publicado algo al respecto, he recibido serias críticas de fieles seguidores de este Blog, a los que quiero y respeto mucho. Para muestra la última entrada al respecto en 2014. Pero la cosa vuelve cíclicamente a mi escritorio y, esta pasada semana, he leído un artículo en Chemistry World, firmado por Rebecca Trager, excelente como siempre y que podéis leer aquí en su versión original. Y que creo que es bueno extender entre los que no sigáis a Chemistry World.

He explicado en otras ocasiones que los dispositivos que se comercializan contienen, básicamente, una disolución de nicotina en propilenglicol, disolución que se coloca en un cartucho que recuerda el filtro de un cigarro convencional. Ese cartucho, reemplazable, se rosca en el cuerpo principal del cigarrillo de pega. Cuando el fumador inhala, se activa un sensor que ordena que se caliente la disolución de nicotina en propilenglicol, que se vaporiza y acaba en el fumador. Lo del propilenglicol es uno de los trucos fundamentales del cigarrillo electrónico porque permite que su vapor se vea, reproduciendo así el humo de un cigarro normal, algo que no ocurre si en lugar de propilenglicol empleamos sólo agua (si funcionara solo con agua hubiera sido la bomba). Además de la nicotina, las marcas comerciales colocan en la disolución algunos saborizantes, en un intento de reproducir lo más fielmente posible el sabor de un cigarrillo convencional. Y aquí es donde empezaron los problemas desde el principio, como se puede ver en la entrada de 2014 arriba mencionada.

Pero, desde hace unos meses, ha surgido un problema más y serio. En un corto período de tiempo, las autoridades sanitarias americanas han detectado 380 casos de afecciones pulmonares severas y seis fallecimientos entre vapeadores (así se llama a los "fumadores" electrónicos) habituales. Los Centros de Control y Prevención de Enfermedades (CDCs) y la propia Administración americana de Alimentos y Medicamentos (FDA) están trabajando en el asunto y parecen haber llegado a la conclusión de que un posible causante del problema es un suplemento nutricional que, químicamente, responde al nombre de acetato de tocoferilo o, lo que es lo mismo, acetato de vitamina E.

Explica Rebecca que, cuando las autoridades sanitarias comenzaron la investigación, el primer punto en común de muchas de las muestras investigadas, proporcionadas por los propios enfermos, contenían un componente psicoactivo del cannabis, el tetrahidrocannabiol al que, en un principio, se echaron las culpas. Pero ahora se sabe que muchos de los líquidos de vapeo que contenían ese cannabinoide también contenían acetato de vitamina E, que se comenzó a usar en esas mezclas como una forma de incrementar su viscosidad y facilitar así su empleo. Es lo que en otros ámbitos como la cosmética (y también en cocina) se conoce como un espesante.

Aunque el mencionado acetato es una sustancia que no parece tener efectos dañinos cuando se ingiere oralmente o se aplica en la piel, no se tienen muchos datos en lo relativo a sus efectos por inhalación. En el artículo de Chemistry World, un experto le cuenta a Rebecca que la temperatura de vaporización del acetato en cuestión está en el intervalo de las temperaturas que se alcanzan en los dispositivos de vapeo, con lo que puede llegar a los pulmones en forma gaseosa y depositarse posteriormente en ellos en forma líquida, provocando respuestas del sistema inmunológico y dando lugar a procesos inflamatorios que pueden ir a peor.

Parece ser también que la mayoría de estos líquidos con tetrahidrocannabiol están en mercados alternativos, mal controlados, de los líquidos de vapeo, ya que esa sustancia, aprobada para su uso recientemente en Canadá, no lo está en los EEUU. Llama la atención también que la alerta producida en EEUU no se haya reproducido en otros países como, por ejemplo, el Reino Unido. El artículo de Chemistry World achaca la diferencia a los mucho más estrictos controles que las autoridades inglesas tienen sobre todo lo que tiene que ver con los cigarrillos electrónicos.

Como consecuencia de toda esta problemática, el gobierno Trump manifestó hace pocas semanas su pretensión de prohibir los dispositivos de vapeo, algo a lo que se ha sumado el de India esta misma semana. Veremos en qué queda.

Mientras tanto, y como actualización posterior, no se pierdan el comentario de uno de mis antiguos estudiantes (y, sobre todo, amigo) que aparece debajo.

Leer mas...

martes, 27 de agosto de 2019

Globos y la crisis del helio

Para que un globo de los usados en cumpleaños y otros festejos se eleve sobre la superficie de la Tierra, se necesita llenarlo con un gas que sea menos denso que el aire, cuya densidad es 1,27 g/L. Cuando uno busca gases que cumplan esa condición, los posibles candidatos no son muchos y, además, algunos pueden resultar peligrosos, como el hidrógeno, cuya densidad anda en torno a 0,09 g/L. Cuando yo era jovencito, en las dependencias de Bomberos de mi pueblo, ocurrió un grave accidente que dejó muertos y quemados. Mientras llenaban globos con hidrógeno para una cuestación benéfica, alguien fumaba en los alrededores y provocó la catástrofe.

El helio es un buen candidato para los menesteres que nos ocupan, al menos en principio. Se trata de un gas incoloro, inodoro, muy estable y cuya densidad es 0,18 g/L, lo suficientemente pequeña como para que los globos que llenemos con él se vayan hacia las nubes en cuanto los dejemos libres. Pero los átomos de helio difunden fácilmente a través de las paredes del caucho que constituye el globo así que, poco a poco, el gas se escapa del interior del globo, que pierde presión y se va haciendo cada vez de menor tamaño hasta que, finalmente, se queda prácticamente sin helio y vuelve a caer por gravedad hacia la tierra.

Cuando hace unos meses escribí una entrada sobre un artículo publicado en una revista del grupo Nature en el que parecía concluirse, según la sorprendente interpretación de algunos medios de comunicación, que el plástico que más animales mataba en el mar era precisamente el material constitutivo de los globos, el censor ortográfico más puntilloso que tengo entre los lectores de este Blog, Alexforo, me mandó un vídeo de una escuela italiana en la que se adoctrinaba a los tiernos infantes para que no soltaran globos a la atmósfera, como una forma de evitar la contaminación por plásticos y microplásticos existente en los océanos. Y no son los únicos con tales iniciativas. Hace poco se publicó en el New York Times un artículo en el que se contaba que Gibraltar había prohibido la suelta de globos en una ceremonia que se venía celebrando desde 1992, cuando se conmemoró el vigésimo quinto aniversario del referéndum en el que los llanitos decidieron permanecer bajo las faldas de Su Majestad Británica. Desde esa conmemoración, cada setiembre se han soltado 30.000 globos desde Gibraltar, hasta que este año se ha prohibido la suelta como consecuencia de que el Gobierno del Peñón "reitera su compromiso con un mar limpio, libre de plásticos y otros materiales no biodegradables que causan mucho daño a la vida marina".

No me parecen mal, ni mucho menos, este tipo de gestos aunque, si habéis leído mi serie sobre los microplásticos (por ejemplo aquí), estaréis conmigo en que no dejan de ser brindis al sol. A fin de cuentas, la posible contribución de los globos al flujo de plásticos que acaba todos los años en el mar, a través de ríos bien localizados en el mundo, es ridícula. Más o menos como la posible contribución de esas mismas sueltas de globos a la crisis del helio que actualmente estamos padeciendo y que es, en el fondo y después de todo este rollo, lo que yo quería contar en esta entrada que ya se me está haciendo demasiado larga.

El helio es el único elemento, entre todos los de la Tabla Periódica, que permite alcanzar temperaturas extraordinariamente próximas al llamado cero absoluto de temperaturas, establecido en -273,15 ºC. El helio líquido hierve unos cuatro grados por encima de esa temperatura, así que lo mismo que cocemos a una temperatura constante de 100 ºC cuando el agua hierve, podemos mantener muchas cosas a esa temperatura tan baja, a la que el helio hierve.

Un descubrimiento inicial posibilitado por manejar cosas en helio líquido es que algunos materiales, cuando se enfrían a temperaturas muy bajas, pierden su resistencia eléctrica y se convierten en superconductores. Gracias a ellos, por ejemplo, tenemos los trenes de levitación magnética o los equipos de Tomografía por Resonancia Magnética, miles de los cuales funcionan en los hospitales del mundo. El helio es fundamental también en instalaciones de física de partículas como el Gran Colisionador de Hadrones (LHC) del CERN, cerca de Ginebra, y ha posibilitado descubrimientos merecedores del Premio Nobel como el efecto Josephson, la superfluidez (ausencia de viscosidad) o el efecto Hall cuántico. Y los químicos tenemos en los equipos de Resonancia Magnética Nuclear (RMN) una herramienta muy poderosa que ha revolucionado la síntesis química y farmacológica.

Todos esos equipos necesitan un aporte continuo de helio líquido, sin el que no pueden funcionar. Y mientras están en funcionamiento, lo pierden continuamente y para siempre en las inmensidades del Universo. Aunque en ese Universo el helio es el segundo elemento más abundante (tras el hidrógeno), su presencia en la Tierra es una rareza que se origina como consecuencia de la descomposición radiactiva de otros elementos localizados en la corteza terrestre, un proceso que tarda millones de años y para el que no hay alternativa a la hora de producir helio.

Una pequeña fracción del helio que se produce mediante el proceso arriba mencionado puede quedar atrapado en lugares protegidos por rocas impermeables, acompañando a otros gases como el gas natural. Solo si en ese gas natural el helio está por encima del 0,3% el proceso de recuperación del helio puro es viable económicamente, algo que la mayoría de los yacimientos de gas natural no cumplen, por lo que no pueden ser fuente del helio que necesitamos.

Con todos estos problemas y la cada vez mayor necesidad de helio en experimentación científica y en instrumentos que se han vuelto esenciales en laboratorios y hospitales, resulta lógico que su precio haya ido subiendo de forma alarmante en los últimos años y se hayan producido cortes puntuales de suministro en algunos lugares, lo que puede causar daños irreversibles a algunos de los equipos mencionados. Y para poner aún peor las cosas, una fuente estratégica de helio, la Federal Helium Reserve del Gobierno americano, que lleva funcionando desde 1960 en Amarillo, Texas, amenaza con cerrar sus puertas en el otoño de 2021.

Así que, aunque solo sea testimonial, mejor no compráis globos llenos de helio para los chavales.

Leer mas...

miércoles, 14 de agosto de 2019

Catadores de Coca-Cola

La historia de la Coca-Cola, como la de muchos productos que han acabado teniendo un lugar en nuestra civilización, resulta de lo más entretenida cuando uno tiene tiempo, como yo, para perderlo en los entresijos de su devenir a lo largo de los tiempos. De casi todos es conocido que el brebaje que constituye la esencia de la bebida se debe a un farmacéutico de Atlanta, John Pemberton, que lo formuló en 1886. Tras su muerte en 1888, Asa Candler compró los derechos en 1891, fundó la compañía e instituyó la larga tradición de no patentar la fórmula sino mantenerla en secreto, tradición que aún hoy pervive. Al hilo de la fórmula original, lo que no todo el mundo sabe es que en un pequeño pueblo valenciano, Aielo de Malferit, reivindican que, seis años antes, habían inventado un jarabe con un sabor parecido, a base de nuez de Kola y hojas de coca de Perú, que llamaron Kola-coca. Es una interesante historia que podéis leer en este artículo de El País.

Claro que las técnicas analíticas que los químicos usamos han cambiado mucho en este casi siglo y medio transcurrido desde entonces y hoy sería posible aproximarse mucho, si no del todo, a la fórmula exacta de la bebida en términos de sustancias químicas presentes. Eso también debió pensar Carl Djerassi, un insigne químico de origen búlgaro, tenido como el padre de los anticonceptivos orales, del que os hablé en una entrada de 2006 que luego actualicé en 2014. Personaje multifacético donde los haya, entre sus intereses estaba también la literatura y en uno de sus conocidos cuentos (Cómo vencí a Coca-Cola), fabulaba con la historia de un químico que había conseguido identificar, gracias a las técnicas instrumentales más potentes disponibles en el momento, los, según el cuento, 227 diferentes componentes químicos de la Coca-Cola original y generar, mezclándolos en las proporciones adecuadas, una bebida indistinguible de ella. Por lo que pidió a la compañía una respetable cantidad de dinero para mantener el secreto (mejor os leéis ese y otros cuentos en este pequeño libro).

Pero independientemente de las fantasías químicas de Djerassi, la leyenda del secreto de la fórmula sigue vigente y son muchas las noticias y páginas de internet dedicadas al asunto. Por ejemplo, en el año 2011 corrió la noticia de que se había encontrado la fórmula original en un libreta de notas de un boticario amigo de Pemberton, libreta que había pasado de generación en generación entre sus familiares. Y, en este enlace, podéis encontrar una de las bastantes recetas que circulan en la red, en la que, usando ocho aceites esenciales, ácido fosfórico, agua, azúcar, cafeína y un colorante a base caramelo, se asegura conseguir un producto final indistinguible del original.

Pero, en estos tiempos en los que los gobiernos nos quieren mantener sanos y saludables (usando como excusa hasta el cambio climático), la cafeína y sobre todo el azúcar, no tienen muy buena prensa. Así que Coca-Cola ha evolucionado con los tiempos y ha eliminado la cafeína de algunas de sus versiones o, incluso y en la llamada Zero-Zero,la cafeína y el azúcar. Y para mantener el dulzor de la Coca-Cola original, el azúcar ha sido sustituido por uno o varios (según los países) edulcorantes artificiales, aunque el omnipresente en todas las Coca-Colas del mundo mundial es el aspartamo, sobre el que hemos hablado en este Blog a propósito del acoso al que le vienen sometiendo, desde su descubrimiento, los más radicales quimiofóbicos.

El caso es que entre mis ocho sobrinos (siete por parte propia y uno de la Búha), tengo algunos que, si vienen a nuestra casa, me piden una Coca-Cola. Algo que nosotros bebemos muy raras veces al año pero, en el frigorífico y por aquello de los sobris, siempre hay Coca-Cola con todo y Coca-Cola Zero-Zero. Hace poco, uno de ellos, cuya actividad profesional tiene que ver con la compañía de Atlanta, vino de visita y nos pidió una Zero-Zero. Fue catarla, hacer un mohín raro y ponerse a buscar la fecha de consumo preferente. Fecha que indicaba que esa lata llevaba unos nueve meses pasada de rosca. Tras sorprenderme ante las sensibles papilas de mi sobrino y tras su muy parca sugerencia de que el asunto tenía que ver con el aspartamo, no había más remedio que empezar a tirar del hilito.

Como contaba en la entrada mencionada arriba, el aspartamo es una molécula relativamente complicada que, en el tracto gastro intestinal de animales y humanos, se hidroliza (se rompe) para dar tres moléculas más pequeñas y bien conocidas, dos de las cuales, el ácido aspártico y la fenil alanina, son dos aminoácidos esenciales, es decir, aminoácidos que nuestro organismo necesita pero que no puede sintetizar y que, por tanto, los tiene que extraer a partir del metabolismo de los alimentos. La tercera de las sustancias es el metanol, que es el principal peligro de esa hidrólisis, pero el metanol también accede a nuestro organismo cuando consumimos verduras, legumbres, sidra o zumo de tomate, sin que ocurran trastornos dignos de mención, dadas las cantidades que ingerimos. También puede que aparezca, como impureza del aspartamo empleado, una sustancia conocida como 2,5 dicetopiperazina (DKP) y que no es ni cancerígena ni genotóxica.

Pero el aspartamo también se puede hidrolizar (romper), de manera algo diferente, en la propia botella o lata de Coca-Cola a medida que pasa el tiempo, debido al medio ácido (pH en torno a 3) en el que se encuentra y que se debe, fundamentalmente, al ácido fosfórico que forma parte de la receta tradicional. La hidrólisis del aspartamo en medio ácido y su desaparición en el tiempo está bien estudiada desde los años ochenta (un trabajo de referencia suele ser el de Tsang, Clarke y Parrish, J. Agric. Food Chem. 33, 743 (1985)). Los autores identificaron hasta cuatro compuestos de esa hidrólisis, cuya concentración dentro de la lata va creciendo en el tiempo, entre ellos la fenilalanina y la DKP antes mencionadas, pero lo más importante para nuestra explicación es que, paralela y lógicamente, el aspartamo va desapareciendo de nuestra bebida aún almacenada. Al cabo de seis meses de estar en el recipiente, sólo queda el 30% del aspartamo originalmente añadido y al cabo de tres años su concentración no llega ni al 1%. Me imagino que todo eso la compañía lo sabe y tomará las medidas oportunas en torno a los tiempos de consumo preferente que establece en sus recipientes. Y supongo que eso también tendrá que ver con que añadan otros edulcorantes acompañando al aspartamo.

Lo cual complica un poco el asunto de la cata. Así que me he puesto un aviso en mi agenda para que la próxima vez que nos visite el "catador" de Coca-Cola, podamos tener disponibles, además de la Coca-Cola de venta en España (que lleva aspartamo y otros dos edulcorantes), una proveniente de Francia (que solo contiene aspartamo y otro más). Y a ver si es capaz de detectar las diferencias.

Leer mas...

jueves, 1 de agosto de 2019

Mujeres y enlaces de hidrógeno

De vez en cuando me llama la atención alguna historia relacionada con mujeres científicas y, enseguida, me acuerdo del Blog Mujeres con Ciencia que edita la incansable Marta Macho Stadler, profesora del Departamento de Matemáticas de la UPV/EHU. Y, si se tercia, escribo algo como modesta contribución al mismo. Esta vez la cosa ha venido rodada. Leí a principios de julio un interesante artículo de Andy Extance en Chemistry World sobre Dorothy June Sutor, una cristalógrafa cuya historia está relacionada con la de Rosalind Franklin, tanto por el ámbito científico en el que se movieron, como en los sitios en los que desarrollaron su actividad científica. Y, finalmente, en la influencia que en sus vidas tuvo el comportamiento poco ético de algunos colegas masculinos que les rodearon. Además, la pasada semana, se cumplían 99 años del nacimiento de Rosalind Franklin. Así que todo se prestaba a escribir lo que el pasado martes 30 de julio se publicó en el Blog cuyo logo se ve arriba. Aquí tenéis el enlace. Hay partes del texto un poco "para químicos", pero creo que la historia que subyace merece la pena.

Leer mas...

martes, 16 de julio de 2019

Sobre los efectos perjudiciales de los microplásticos en la fauna marina

Los plásticos y microplásticos, que acaban en los océanos por cualquiera de las vías que hemos visto en las dos entradas anteriores, pueden tener efectos perjudiciales en los seres vivos que viven en el mar (peces, mamíferos, etc.) o cerca de él (como es el caso de las aves marinas). Los macroplásticos como los grandes filmes o las redes y cuerdas proveniente de los barcos, de los que no se habla tanto como de los envases pero que son bastante abundantes, pueden causar la muerte de pájaros, mamíferos marinos o tortugas al resultar atrapados por ellos, lo que les impide moverse, alimentarse o incluso respirar. Y también por ingestión y bloqueo u obstrucción del tracto gastrointestinal. Este también puede ser el caso de la ingestión de los mucho más abundantes microplásticos, que los animales pueden confundir con sus presas habituales.

Aunque las imágenes y vídeos que circulan por internet al respecto resultan preocupantes, el efecto real en la salud de los organismos está lejos de ser conocido con exactitud. Y para apoyar esta afirmación voy a usar en los párrafos siguientes una reciente monografía colectiva sobre la basura marina de origen antropogénico. Si os interesa el tema, esa monografía se puede descargar gratuitamente en ese mismo enlace. Es un pdf de casi 500 páginas y más de un millar de referencias. En uno de sus capítulos queda claro que una gran parte de las especies marinas se han visto afectadas progresivamente por alguno de los problemas mencionados en el párrafo anterior (atrapamientos, ingestión, etc.). Y así, en el resumen de ese capítulo se dice que "el número de especies que se conoce que han sido afectadas ya sea por ingestión o por resultar atrapadas en plásticos se ha doblado desde 1997, desde 267 a 557 especies. Por ejemplo, en las especies de tortugas marinas las afectadas han pasado del 86 al 100% ( 7 de 7 especies), en el caso de mamíferos marinos del 43 al 66% (81 de 123 especies) y en el de las aves marinas del 44 to 50% (203 de 406 especies)". Esas cifras provienen de un meticuloso trabajo de búsqueda en bibliografía que han llevado a cabo los autores y que muestra que los macro o microplásticos han causado algún efecto no deseado en algún miembro de esas especies.

Pero mucho más complicado que establecer la afectación o no en un tipo de especie es cuantificar el número de individuos afectados y las consecuencias últimas de esa afección en términos, por ejemplo, de la mortalidad causada por esos problemas. No en vano, la extensión y profundidad de mares y océanos y la población de fauna marina son inmensas. En otro de los capítulos de la monografía arriba citada, la autora estudia los efectos de los microplásticos en esa fauna y concluye en el resumen que "A pesar de la preocupación causada por la ingestión de microplásticos en poblaciones naturales, sus efectos y las implicaciones en las cadenas alimentarias no están bien entendidas por el momento. Sin un conocimiento de las velocidades de ingestión y expulsión de los microplásticos en las poblaciones, es difícil deducir sus consecuencias ecológicas". En el apartado dedicado a los peces puede leerse literalmente que "todos los estudios citados sugieren que la ingestión de microplásticos es la ruta principal de exposición de los peces a la basura plástica, al ser identificados equivocadamente como presas o comida. Pero no se han observado efectos adversos de manera significativa". Y en el dedicado a los efectos de los microplásticos en aves marinas se dice que "la mayoría de las aves marinas examinadas en la bibliografía no mueren como consecuencia directa de la ingestión de microplásticos", al entender que la mayor parte de ellos son ingeridos y posteriormente expulsados en forma de heces.

Esa misma idea se desprendía de un reciente estudio realizado por investigadores de la Universidad de Tasmania sobre la incidencia de los microplásticos en la mortalidad de las aves marinas que vimos en una entrada anterior. Es evidente que los resultados que se concluyen de ese estudio particular no son comparables con revisiones bibliográficas como las mencionadas en los párrafos anteriores. De hecho, yo no hice mucha incidencia en los resultados como tales sino que utilicé el estudio para denunciar el mal uso que muchas veces se hace, en las notas de prensa de las Universidades y en los medios de comunicación, de los datos reales de un artículo. Pero no deja de ser un ejemplo de lo que aquí nos interesa. El artículo evidenciaba que el 32% de los 1733 cadáveres de aves marinas a los que se hicieron las autopsias tenía algún microplástico en el tracto gastro-intestinal. Pero solo 13 (el 0,75%) habían muerto fehacientemente como consecuencia de esa ingestión.

Consideraremos ahora un tema mucho más recurrente en las introducciones de muchos artículos científicos en este área, así como en los medios de comunicación. Y que es el argumento de que los microplásticos pueden acumular, una vez presentes en el mar, los llamados Contaminantes Orgánicos Persistentes, COPs o POPs en inglés. Sustancias como el DDT, los bifenilos policlorados (PCBs) usados como aislantes en instalaciones de alto voltaje o los polibromodifenil éteres (PBDEs), usados como aditivos retardantes de la llama. Han ido a parar al mar como consecuencia de su producción y empleo industrial en el pasado, aunque llevan años prohibidas. Pero, como su nombre genérico indica, es complicado que se degraden en el medio ambiente y, por tanto, siguen ahí, ya sea depositados en los sedimentos o disueltos en el agua en concentraciones muy por debajo de los nanogramos/gramo de agua.

Esos compuestos tienen una solubilidad muy baja en agua (podemos llamarlos hidrófobos) pero tienen una afinidad mucho más alta por medios no acuosos (orgánicos), como resultan ser los microplásticos. Así que prefieren adsorberse o absorberse en el plástico antes que estar disueltos en el agua de mar. Los químicos cuantificamos eso en forma del llamado coeficiente de reparto, que no es más que un número que mide la preferencia de una sustancia a estar disuelta en un medio u otro. En el caso de la pareja plástico/agua ese número puede llegar a ser tan alto como un millón o más. La principal alarma que de ello se deriva es que los microplásticos se carguen de forma importante con POPs y puedan ser ingeridos por los pájaros o los peces. Los POPs podrían pasar a los organismos de estos, acumulándose progresivamente (bioacumulación) en sus músculos y, sobre todo, en la grasa. Y, a través de la cadena de alimentación, llegarían hasta nosotros. Es lo que resume la figura que ilustra esta entrada, tomada de un trabajo de P. Wardrop y otros.

La contaminación de organismos marinos por POPs y su bioacumulación está bien documentada, incluso en organismos que viven en lugares como la Fosa de las Marianas a 10.000 metros de profundidad como demuestra este artículo. Pero el que ello haya sido producido de forma importante por la ingestión de microplásticos es una hipótesis que está lejos de haberse probado a nivel científico. Por ejemplo, los petreles y otras aves marinas se suelen considerar como "chivatos" del estado de la contaminación en el mar. Aunque hay artículos más antiguos que detectan simultáneamente la presencia de POPs en los tejidos de algunas aves marinas y de microplásticos en sus estómagos, el primer estudio que trata de correlacionar unos y otros (en realidad un informe del Instituto Polar Noruego) data de fecha tan reciente como 2104. Estudiando un número reducido de petreles se encontró que, en general, la concentración de los diferentes POPs en sus organismos era básicamente la misma en petreles con microplásticos en su estómago que en los que tenían el estómago libre de los mismos.

Un artículo posterior (2016), mucho más riguroso en cuanto al número de muestras investigadas y a las técnicas utilizadas, viene a llegar a esa misma conclusión. Hay POPs en cantidades parecidas en petreles con plástico en sus estómagos o sin ellos. De donde los autores hipotetizan que esa intoxicación por POPs tiene que provenir de fuentes diferentes a los microplásticos, probablemente de las presas de las que se alimentan y que estarían contaminadas con los POPs presentes en el agua y los sedimentos de los océanos.

Ya os he presentado a Albert Koelmans en una reciente entrada, como Coordinador de un estudio para la Union Europea sobre los riesgos de los microplásticos para la salud y el medio ambiente. Se trata de un científico especializado en la presencia de los POPs en el mar, con bibliografía sobre los diferentes materiales que pueden actuar como "acumuladores" de esos contaminantes, incluidos los microplásticos. Un artículo en el que figura como primer firmante, publicado en 2016, es una de las más recientes (e interesantes, en mi humilde opinión) revisiones críticas sobre el estado del asunto de los microplásticos como vectores de la bioacumulación de los Compuestos Orgánicos Persistentes.

La primera conclusión importante que se desprende de ese artículo es que aunque es cierto que hemos vertido mucho plástico al océano, la cantidad es aún pequeña (unos 2 nanogramos por litro de agua) en comparación con otras cosas existentes en el mar que, y esto es importante, pueden llegar a contener o almacenar esos contaminantes y, por lo tanto, actuar como vectores compitiendo con los microplásticos. Por supuesto, hay mucha más agua (unas 10.000 millones de veces más que plástico) donde esas sustancias están disueltas. Pero también hay un millón de veces más de materia órganica dispersa, y cientos de miles de veces de cosas como el fitoplacton, los coloides o incluso casi la misma cantidad de partículas de carbón. Todas pueden absorber los POPs contenidos en el agua, aunque con diferentes intensidades en virtud de los coeficientes de reparto de los que hemos hablado arriba.

Los autores del artículo se ponen en un escenario extremo en el que eligen los coeficientes de reparto más altos para los microplásticos y los más bajos para el resto de sustancias dispersas en el mar. Y con esa premisa estiman que la cantidad de POPs absorbida por los plásticos representa, en ese peor escenario, un porcentaje del 0,0002% de los POPs que están en el agua de los océanos. Ese porcentaje iría creciendo si los microplásticos siguen aumentando (algo que esperemos solucionar) pero, por el momento, parece que el papel de los microplásticos como vectores de esos contaminantes es muy poco relevante.

En ese mismo artículo, Koelmans y sus colegas se manifiestan bastante críticos con los experimentos de laboratorio, muy abundantes en el campo que estamos considerando, en los que peces u otros organismos marinos son encerrados en acuarios y alimentados con comida convencional mezclada con microplásticos que, previamente, se han contaminado con cantidades, en muchos casos exageradas, de POPs, estudiando así los potenciales efectos en los seres vivos. Los autores entienden que ese tipo de experimentos no reproducen las condiciones reales de los océanos y, por tanto, son poco relevantes al estimar los riesgos reales. Una opinión que también mantienen otros autores conocidos en el campo que nos ocupa, como Rainer Lohmann, en este artículo.

Y con esto vamos a dejar, por ahora, el asunto de los microplásticos en el mar. Que no el de los microplásticos en general......Pero estas cosas tienen su trabajo y ahora hace buen tiempo.

Leer mas...

jueves, 4 de julio de 2019

A la búsqueda del plástico perdido en el mar

Acabábamos la entrada anterior con una figura que ilustraba las grandes vías fluviales que contribuyen significativamente a la entrada de residuos plásticos en los océanos. Decíamos también que esos residuos provienen, en gran parte, de países emergentes que tienen costa y que no manejan adecuadamente esos residuos. Una vez en el mar, los plásticos son arrastrado por el viento, las mareas y las corrientes marinas, lo que puede hacer que aparezcan incluso en las zonas mas recónditas del globo, como es el caso de la región Ártica. Además, en algunos puntos significativos del océano, las corrientes se mueven en forma de los llamados giros. Uno de esos giros, situado al Norte del Océano Pacífico, ha contribuido a acumular en esa zona concentraciones más grandes de residuos plásticos que las que se dan en otros puntos de los océanos. Es el ejemplo más citado de las llamadas islas o parches de basura, un concepto introducido por el oceanógrafo y marino Charles J. Moore en los años 90 cuando, volviendo de una regata entre Los Angeles y Hawai, se encontró con una acumulación importante de basura en esa zona, la mayor parte en forma de residuos de plástico. Desde entonces, el concepto es un icono sobre la contaminación marina por esos materiales, ampliamente citado en los medios de información y en internet.

Pero habría que dejar claro que no son tales islas (he visto comentarios en internet en el sentido de que hasta se puede caminar por ellas) y que lo que se puede ver en esa zona no se corresponde con las fotos con las que los medios y las redes sociales suelen ilustrar sus reportajes sobre el tema, fotos que suelen provenir de acumulaciones de basura en bahías cerradas como la de Manila o en estuarios de ríos como el Motagua, en Honduras, casi siempre después de episodios meteorológicos significativos como tifones o lluvias torrenciales. Y quien necesite una fuente más respetada sobre el asunto que la humilde opinión de este vuestro Búho, puede recurrir a la NOAA (National Oceanic and Atmospheric Administration) americana, una de las agencias más citadas en el ámbito medioambiental. En su sitio web y en una de sus páginas, lo explica de forma meridiana: "El nombre “Isla de Basura del Pacífico" ha llevado a muchos a creer que se trata de un área grande y continua de elementos de desechos marinos fácilmente visibles, como botellas, bolsas, etc., similar a una isla real y que debería ser visible con fotografías desde satélite o “in situ” desde barcos. Este no es el caso. Si bien se pueden encontrar mayores concentraciones de elementos de basura en este área, gran parte de los desechos son en realidad pequeñas piezas de plástico flotante que no son evidentes a simple vista".

Este contundente comentario de la NOAA nos da pie para entrar un poco más en detalle en el tema de los Microplásticos, residuos plásticos de pequeñas dimensiones. Como ya vimos en otra entrada reciente el tamaño de estos residuos importa, así que es conveniente distinguir entre las diversas dimensiones de los mismos. En un muy reciente artículo de N. Hartmann y otros [Environ. Sci. Technol. 53, 1039-1047 (2019)] y como forma de que todos empleemos un lenguaje similar, los autores proponen que cuando hablemos de Microplásticos nos refiramos a trozos de estos materiales cuya dimensión más significativa vaya entre 1 y 1000 micras, reservando el de Nanoplásticos a los que midan entre 1 y 1000 nanómetros. Residuos plásticos más grandes deberían denominarse Macroplásticos (mayores de 1 centímetro) o Mesoplásticos (entre 1 y 10 milímetros). Veremos si esto acaba por imponerse porque lo cierto es que hay por ahí varias definiciones de Microplástico.

En la imagen que ilustra esta entrada (y que se puede ver mas grande clicando en ella) aparecen las diferentes fuentes de esos Microplásticos. En primer lugar, los diversos productos acabados de plástico que todos utilizamos y que, una vez que los desechamos y acaban en el medio ambiente (vamos a fijarnos en el marino), sufren un progresivo efecto de degradación provocado, sobre todo, por la acción de la luz UV y el oxígeno. Eso hace que su naturaleza química vaya cambiando, lo que provoca, en muchos casos, una mayor fragilidad del material con ulteriores procesos de fragmentación que, en el caso del mar, pueden verse favorecidos por la acción mecánica del oleaje. Esos mismos procesos ocurren con lo que los poliméricos llamamos granza, pequeñas esferas o cilindros vendidos por los grandes fabricantes de plástico a las industrias transformadoras, para que éstas los fundan y moldeen en los diversos objetos que el consumidor emplea. Estas granzas, sin embargo, han ido disminuyendo su presencia en el mar desde los años 90, como consecuencia de normativas como la MARPOL, que se han ido imponiendo tanto a los productores como a los transformadores de plástico.

La bibliografía reciente hace cada vez más incidencia en la importante presencia de las fibras textiles en los muestreos de Microplásticos realizados tanto en el mar como en la tierra o el aire. En el caso del mar, se había extendido la idea de que la fuente fundamental de fibras (no solo sintéticas sino también naturales como el algodón) es el lavado de nuestras prendas ya sea a mano o, sobre todo, en las lavadoras de los occidentales. Sin embargo, hoy parece cada vez más claro que, al menos en el caso de los países occidentales, las plantas de tratamiento de agua atrapan un porcentaje muy elevado de esas fibras. Y se va imponiendo la idea [S.A Carr, Integr Environ Asses Manag 13, 466 (2017)] de que, como consecuencia del uso que hacemos de diferentes materiales textiles (las alfombras son otra importante fuente de fibras), la mayoría de esas fibras pasan al aire y de ahí al mar. Finalmente, otra fuente mas reciente de los Microplásticos en el mar son las microesferas o microcápsulas de productos de belleza, pastas de dientes, etc., utilizadas en esos productos como agentes abrasivos y que, aunque no han llegado a ser un componente importante en el total de los Microplásticos en el mar (la producción global ha alcanzado como mucho unas 1700 toneladas/año en los pocos años que se han venido usando), están siendo ya prohibidas en USA y EU a partir de 2015 y sustituidas por sustancias inorgánicas como la sílice.

El concepto de Microplástico se introdujo en un artículo de la revista Science en 2004. En su título se planteaba una intrigante pregunta: "Perdido en el mar. ¿Dónde está todo el plástico?". Esa misma pregunta se volvió a plantear unos años más tarde cuando se conocieron los resultados [A. Cózar y otros, PNAS 111, 10239 (2014)] de una expedición científica llevada a cabo durante los años 2010 y 2011 por dos buques oceanográficos españoles (el Hespérides y el Sarmiento de Gamboa). Esa expedición emuló otra llevada a cabo por el italiano Alessandro Malaspina, al servicio de la Corona española, a finales del siglo XVIII. La nueva expedición Malaspina tenía diversos objetivos científicos, uno de los cuales era evaluar la cantidad de plástico que había en la superficie de los mares. Los resultados fueron sorprendentes ya que, aunque era cierto que en la zona superficial del océano había mucho residuo plástico (casi todo en forma de Microplásticos acumulados especialmente en el centro de los giros que ya hemos visto), los investigadores calcularon que los océanos acumulaban en su superficie entre 7.000 y 35.000 toneladas de estos residuos, solo un 1% del plástico que se estimaba debía haber ido al mar.

En el artículo que acabo de mencionar, los autores atribuyen esa discordancia a la transferencia de plástico desde la superficie del mar hacia el fondo del océano. Una hipótesis que tropieza, de entrada, con una realidad evidente, cual es el que una parte muy importante de los plásticos que utilizamos (polietileno, polipropileno y algunos tipos de poliestireno) tienen densidades más pequeñas que la del agua salada que llena los mares (1.02 gramos /c.c.) y, por tanto, tendrían que flotar. Los autores especulaban que quizás una parte de esos residuos flotantes, al irse degradando por la acción combinada de la luz y los rayos UV, pueden cambiar su estructura química lo suficiente como para cambiar su densidad y hundirse. Otra posible causa de su inmersión hacia el fondo podría tener como origen la conocida colonización de la superficie de los Microplásticos por microorganismos, creando sobre ella una especie de biofilme que podría aumentar la densidad. Y, finalmente y como veremos en la siguiente entrada, está comprobado que el plástico ingerido por peces y aves marinas es, en su gran parte, defecado y podría hundirse convenientemente "envuelto" en las heces.

Pero enseguida comprendimos que la pequeña fracción detectada por la gente del Malaspina se debía, al menos en parte, a ciertos problemas metodológicos. Otro trabajo, publicado a finales de ese mismo año 2014 [M. Eriksen y otros, PLOS ONE DOI:10.1371/journal.pone0111913] y resultado de otra expedición en la que participó el ya mencionado Charles J. Moore, estimó en casi diez veces más la cantidad de plástico que flotaba en la superficie. La diferencia fundamental entre ambos trabajos estribaba en que, en este último caso, se utilizaron redes de captura de residuos con tamaños de luz inferiores a los de la expedición Malaspina, lo que les permitió recoger partículas más pequeñas que se escapaban a las redes de la expedición española. Aún y así, en sus conclusiones, Eriksen y sus colegas establecen que sus nuevas cantidades siguen siendo sustancialmente inferiores a las esperadas y que la pregunta ¿Dónde está todo el plástico? del artículo de Science de 2004 arriba mencionado, permanecía sin respuesta.

Este pasado mes de mayo de 2019 se publicaba lo que puede conceptuarse como primer metanálisis sobre la distribución de residuos plásticos en el mar [G. Erni-Cassola y otros, J. Hazard. Mater. 369, 691 (2019)]. Os recordaré que, en un metanálisis, los autores revisan de forma exhaustiva la bibliografía sobre un tema, tratando de extraer conclusiones fiables sobre el estado del mismo, a la vista del mayor o menor consenso que se pueda desprender de la bibliografía consultada.

No os voy a detallar, a estas alturas de la entrada, el artículo en cuestión. Pero una de las conclusiones más importantes de ese metanálisis es que en los fondos marinos investigados, a profundidades mayores de 200 metros, los plásticos significativamente predominantes son, como cabría esperar en principio, los de densidad superior a la del agua de mar, como poliésteres, poliamidas y poliuretanos. Sin que pueda demostrarse que, en virtud de procesos como los arriba descritos, hayan ido también cayendo a esa zona los menos densos. Así que los autores proponen en el último párrafo de su artículo que "se necesitan más investigaciones para determinar el destino final de plásticos que tendrían que flotar, como el polietileno o el polipropileno, un requisito fundamental para evaluar el riesgo real que la contaminación por plásticos representa para la vida acuática".

Lo que nos da pie para una ulterior entrada que hable sobre lo que conocemos, por ahora, de esos riesgos.

Leer mas...

jueves, 27 de junio de 2019

Sobre residuos plásticos y su gestión

La reciente entrada sobre el informe de la CE, relativo a los Riesgos para el Medio Ambiente y la Salud de los llamados Microplásticos, puede que haya planteado a más de uno de mis lectores la pregunta de cómo hemos podido llegar a esa situación. Así que, en una serie de entradas, voy a tratar de contestar a esa lógica inquietud avisando, antes de empezar, que, en este tema, uno puede tener sesgos importantes en sus opiniones al respecto porque, no en vano, toda su vida académica, tanto docente como investigadora, ha estado centrada en los materiales poliméricos, una parte importante de los cuales son termoplásticos o plásticos a secas. A pesar de haber irrumpido en nuestras vidas en el siglo XX, han crecido de forma tan apabullante que nos están planteando los preocupantes problemas, derivados del manejo de sus residuos, que todos conocemos. Así que, en esta entrada y en las que le seguirán, para evitar en lo posible esos sesgos, voy a procurar fundamentarlas en datos de revistas científicas o Instituciones fiables y fácilmente comprobables por quién tenga interés sobre el tema.

Parece razonable, para empezar, proporcionar datos contrastables sobre producción de materiales plásticos y sobre la gestión de sus residuos, para poner poner en contexto el origen de los problemas que iremos afrontando en esas siguientes entradas. Como decía antes, los plásticos sintetizados por el hombre empiezan a aparecer en nuestro mundo a finales de los años veinte y, de forma más significativa, después de la segunda guerra mundial, donde algunos como el polietileno o los cauchos sintéticos habían jugado papeles estratégicos. Ello que da reflejado en la primera de las gráficas que os voy a proponer y que está extraída de la organización Our World in Data, una fuente que recomiendo vivamente porque, en ella, se pueden encontrar infinidad de datos fiables sobre casi todo lo que ocurre en nuestro mundo. Los datos que han servido para realizar la figura están tomados de un artículo de R. Geyer y otros [Science Advances 3, e1700782 (2017)].


Esa gráfica (que como todas las que van a ir en esta entrada podéis ampliar clicando en ella) muestra la evolución de la producción anual de plásticos en el mundo desde el año 50 hasta nuestros días. Puede apreciarse el crecimiento sostenido (mas bien acelerado) de esa producción, con pequeños retrocesos muy puntuales durante la crisis del petróleo de los setenta y la reciente recesión financiera, ya en el siglo XXI. Los últimos datos apuntan una producción anual de casi 400 millones de toneladas, a las que habría que sumar otras 75 mas, correspondientes a la producción de fibras sintéticas (poliésteres y poliamidas) que suelen contabilizarse separadamente. Y aún habría que añadir otros materiales poliméricos que, sin ser estrictamente plásticos (no se ponen blanditos al calentar), tienen problemas similares en cuanto a residuos. El ejemplo más importante son los cauchos vulcanizados empleados en los neumáticos de automóviles.

Siendo unos materiales tan jóvenes y que, salvo excepciones como el caucho natural, no se dan en la Naturaleza, es relativamente fácil hacer una estimación fiable de la cantidad total de ellos que los humanos hemos puesto sobre la Tierra. La siguiente figura, también accesible en la web de Our World in Data y derivada del mismo artículo científico mencionado arriba, muestra esa cantidad global acumulada de plásticos en el mundo, hasta un total de unos 7.500 millones de toneladas (ojo, los billones de la gráfica son americanos, es decir, mil millones).


Una cantidad ciertamente impactante pero que no proviene en su totalidad de los envases de todo tipo que nos parecen omnipresentes. Por ejemplo, en Europa y en 2016, los fabricantes de objetos en plástico emplearon 50 millones de toneladas de diferentes materiales plásticos. El 39,9% fueron a envases, pero también acabaron en la construcción (19,7%), en automoción (10%), en material eléctrico y electrónico (6,2%), en objetos de hogar, ocio y deporte (4,2%), en agricultura (3,3%) y en un largo etcétera de otros (16,7%) en el que se engloba el uso de plástico en cosas como muebles, medicina,...

La siguiente cuestión a tener clara es qué hemos ido haciendo los humanos con los residuos plásticos provenientes de los usos, tanto de larga como corta duración, que hemos ido haciendo con esos materiales. De nuevo, Our World in Data y el artículo de Geyer y colaboradores nos proporciona otra interesante gráfica que podéis ver a continuación.


Puede apreciarse que, prácticamente hasta el inicio de los ochenta, nuestro único "tratamiento" de los residuos plásticos era dejarlos donde mejor nos viniera. Posteriormente, y poco a poco, hemos comenzado a reciclarlos y también a incinerarlos, esto último como estrategia destinada a recuperar la energía implícita en ellos. Pero, a nivel global y aún hoy, la cantidad que acaba en vertederos, controlados o no, es superior a la mitad del total de los residuos plásticos generados.

En La Europa de los 28 (más Noruega y Suiza), y según datos de la organización Plastics Europe, la situación es algo mejor. En 2016, por primera vez, el porcentaje de toneladas recicladas de residuos plásticos (31,1%) superó a las depositadas en vertederos (27,3%) pero, y esto es algo que mucha gente no sabe, esos porcentajes fueron superados por los procesos de recuperación de energía (incineración) que nos ayudaron a deshacernos del 41,6% de esos residuos y producir al mismo tiempo electricidad o calor. No en vano, la combustión de los plásticos más usados proporciona una energía comparable o superior a muchos de los combustibles tradicionales.

No os voy a negar que la gráfica siguiente (proviene también de Plastics Europe) es una de mis favoritas cuando quiero sorprender a eventuales interlocutores sobre el tema. Particulariza los porcentajes anteriores a lo que ocurre en cada uno de esos treinta países europeos que acabo de mencionar. Los tramos verdes que aparecen para cada país (y que corresponden a porcentajes de reciclado) oscilan entre el 20% y como mucho el 40%, lo que proporciona el 31,1% promedio antes mencionado.


Pero la diferencia importante entre países aparece cuando consideramos qué hacemos los europeos con el 69% que no reciclamos. La progresiva desaparición de vertederos en países muy relevantes, tanto en lo financiero como en la concienciación medio ambiental, se ha resuelto mediante la implantación de plantas incineradoras (tramos azules). Y para muestra, la pulcra y recogida Suiza o la potente Alemania. En otras naciones, con menos recursos económicos para construir (y mantener) plantas de incineración y/o mas terreno baldío sin utilización relevante, los vertederos (tramos rojos) siguen siendo todavía una opción (hasta llegar al caso extremo de Malta), aunque la tendencia general es a disminuir el uso de esos vertidos.

En los datos globales que se han estado manejando para Europa sobre residuos plásticos y su gestión, los porcentajes atribuidos en los últimos años a los residuos reciclados tienen, sin embargo, una considerable trampa. Por ejemplo, en 2016 se recogieron en el ámbito europeo 27,1 millones de toneladas de plásticos post-consumo, de los que, como hemos dichos arriba, un 31,1% fueron oficialmente reciclados. Pero deberíamos matizar esa cifra, aclarando que mas de la tercera parte (un 37%) de los declarados como residuos plásticos reciclados, lo han sido fuera del ámbito de la UE. Algo que ha venido ocurriendo desde hace años, en los que los países europeos han estado "exportando" basura de todo tipo y condición a países emergentes y en vías de desarrollo, fundamentalmente a China.

Y, entre esa basura, han estado los residuos plásticos que, no hace falta decirlo, en muchos casos no se sabe ni en qué condiciones se han reciclado ni si, tan siquiera, se han reciclado o han acabado en el mar o en los vertederos incontrolados que habréis visto en la prensa. Hasta que China se plantó a primeros del 2018, devolviendo la pelota a los países ricos que, cínicamente, habían ido cumpliendo sus objetivos de reciclado a base de una salida por la puerta de atrás de un buen porcentaje de sus residuos. Desde entonces, otros se han sumado a la idea, y esta semana leía que Malasia nos anda devolviendo a los españoles toneladas de residuos plásticos. Lo cual está planteando un problema serio a los planes de reciclado de plástico de muchas economías occidentales (para muestra este botón).

Por otro lado, muchos de esos países emergentes, además de aceptar residuos plásticos extranjeros, se están incorporando a nuestro modo de vida y están produciendo sus propios plásticos y generando los residuos correspondientes. Por ejemplo, China importó en 2016 7,4 millones de toneladas de residuos plásticos pero ha generado por ella misma otros casi 61 millones. Además, China y otros países del área tienen costa y sus estrategias de recogida y gestión de residuos plásticos adolecen de deficiencias, lo que tiene como resultado que una parte importante de esos residuos acaben en el mar. La gráfica siguiente está construida con datos extraídos de un artículo de Jenna R. Jambeck y otros [Science 347, 768-771 (2015)] y da cuenta de los 20 países que más contaminan los océanos. Europa no aparece por no ser un país como tal, pero estaría situada en los niveles de EEUU, el último del gráfico.


Y la mayor parte de esos residuos entra en el mar a través de las redes fluviales de esas mismas zonas, como lo corrobora esta otra gráfica que aparece en Our World in Data, construida con datos de un trabajo de L.C.M. Lebreton y otros [Nature Communications 8, 15611 (2017)].


Es razonable pensar que una parte de esos residuos provengan también del tráfico de importación desde los países occidentales, pero los números de China que he mencionado antes indican que hay una importante contribución derivada de la producción interna de estos países. Un reciente acuerdo entre los países firmantes del llamado tratado de Basilea, buscaba evitar ese trasiego de residuos como forma de evitar una parte del problema. Pero mientras tanto, sería bueno que algunos activistas dejen de martirizarnos a los occidentales con el asunto de los plásticos de un solo uso. Que no parece que los estemos gestionando tan mal.

Pero esta entrada ya se ha hecho muy larga como para seguir con qué ocurre con esos residuos una vez acaban en el mar. Pero tranquilos, que esto continuará....

Leer mas...

domingo, 16 de junio de 2019

Un informe europeo sobre microplásticos

Solo en las últimas dos semanas he visto que los medios y las redes sociales se hacían eco de noticias (en mi opinión alarmistas) relacionadas con dos artículos científicos publicados sobre el tema de los microplásticos. Uno de ellos, titulado Human Consumption of Microplastics, está publicado a día de hoy solo de forma electrónica (DOI:10.1021/acs.est.9b01517) y se debe a científicos canadienses que establecen que, anualmente, podemos ingerir hasta doscientas mil partículas de estos materiales. El otro no es un estudio científico al uso, sino un informe encargado por el Fondo Mundial para la Naturaleza (WWF, la que conocíamos antes como Adena en España) y ha sido realizado por científicos de la australiana Universidad de Newcastle. En este segundo caso parece evidente que hay un cierto conflicto de intereses porque la Universidad habrá cobrado de WWF y ésta ha usado los resultados en forma de un folleto, cuyas primeras frases han dado lugar a lo que luego se ha difundido en muchos medios y redes sociales: nos comemos el equivalente al plástico de una tarjeta de crédito (5 gramos) cada semana. Lo que seguro que proporciona a WWF algún que otro asociado más a sus campañas.

No voy a entrar, por falta de espacio en esta entrada, a detallar las incertidumbres que me suscitan ambas publicaciones (ya lo abordaremos en otro post, si me acuerdo). Simplemente diré que la metodología es muy parecida y que se basa en repasar la literatura científica en la que se hayan presentado evidencias de microplásticos en el aire, en el agua que bebemos o en los alimentos que ingerimos y, a partir de ahí, tomando una dieta más o menos estándar de los humanos en diferentes partes del mundo, estimar la cantidad de microplásticos que se ingieren. Las "bases de datos" usadas en los dos artículos son muy restringidas y ambos estudios parecen indicar que un componente importante de los microplásticos que podemos ingerir puede provenir del agua que bebemos. Y que está constituido, en un alto porcentaje, por fibras textiles, ya sean naturales (algodón fundamentalmente) o artificiales (poliamidas y poliésteres). En las conclusiones, ambos se curan en salud diciendo que se trata solo de estimaciones, que deberían confirmarse por futuros estudios para los que se necesitarían muchos más datos. Algo que no suele aparecer en los titulares. Y, en cualquier caso, ni unos ni otros cuantifican cuántas de esas partículas salen poco después, y tal cual, de nuestro organismo.

Pero mientras estoy seguro que muchos de vosotros habréis leído noticias al respecto de estos dos artículos, estoy también seguro de que pocos habréis visto, en esos mismos medios, noticia alguna relativa a lo que os voy a a contar en el resto de esta entrada. La Comunidad Europea dispone de un mecanismo de asesoramiento científico que le proporciona informes de alta calidad a la hora de tomar decisiones políticas sobre temas de relevancia en los que la CE es competente. El pasado 30 de abril se hizo público un informe de la CE sobre los riesgos para la salud y el medio ambiente derivados de la contaminación por Microplásticos junto con recomendaciones sobre políticas a seguir. Para llevar a cabo ese informe digamos "político", y entre otras fuentes, los expertos que lo elaboraron contaron con un informe previo, publicado en enero de 2019 y preparado por la denominada SAPEA (Science Advice Policy from European Academies), que abordaba los aspectos estrictamente científicos del tema que nos ocupa. El coordinador de este último informe fue el Profesor holandés (de la Universidad de Wageningen) Bart Koelmans al que, con ocasión de la publicación del informe del 30 de abril, entrevistaron en Horizon, una revista sobre Investigación e Innovación de la propia CE. Y aquí va mi traducción, un poco libre, de lo que Koelmans contaba a Horizon (los subrayados son míos y dan una idea de lo que, personalmente, considero relevante).

¿Cree que es mala la situación actual de los microplásticos?

Si nos fijamos en los hechos que conocemos, los microplásticos se detectan en muchos lugares de todo el mundo, incluidos los seres vivos, el agua, el suelo y el aire. Desde un razonamiento ético o estético, la gente podría argumentar: Bueno, esto no tiene por qué estar aquí, así que la consecuencia es que es malo. Sin embargo, otros podrían pensar que es más importante observar primero los riesgos ecológicos reales o los riesgos para la salud humana. Y, en ese caso, hay muchas cosas que no sabemos. El tema está rodeado de gran incertidumbre.

¿Qué riesgo representan los microplásticos para nuestra salud?

Hay solo unos pocos estudios relativos a la presencia de microplásticos en el agua potable. Se han detectado algunos microplásticos en componentes de nuestra dieta, pero sería deseable disponer de estudios similares repetidos por mas grupos para hacer que los resultados sean más rigurosos y confiables. Pero, ciertamente, sabemos que hay microplásticos en la dieta, por lo que las personas están expuestas a los microplásticos. Sin embargo, la sola presencia de estas partículas en nuestro medio ambiente, o en nuestros alimentos, no implica necesariamente un riesgo.

Para plásticos más pequeños, como los nanoplásticos (menos de 0.05 micras de ancho), sabemos incluso menos. No sabemos cuáles son las concentraciones de exposición y sabemos muy poco acerca de sus efectos. Sin embargo, sí sabemos que las partículas muy pequeñas de otros materiales, como el asbesto o las partículas muy pequeñas que afectan negativamente a la calidad del aire, pueden tener efectos negativos en la salud humana cuando se inhalan durante tiempos largos y en concentraciones más altas
.

¿Qué dice la nueva opinión científica sobre los riesgos?

Concluimos que, en este momento, no hay evidencia de un riesgo generalizado. Pero también vimos que si no se hace nada (y las tendencias continuaran), no es improbable que las posibilidades de riesgo aumenten en algún momento en el futuro. Y ese momento podría darse en 50 o 100 años .

¿Cuán extendidos están los microplásticos en los suministros de agua del mundo?

Muy a menudo es un par de partículas por litro o incluso un par de partículas por metro cúbico, que es bastante bajo si se considera que los organismos están acostumbrados a vivir en un entorno donde las partículas están presentes.

¿Cuáles son los problemas con respecto a los nanoplásticos?

El problema con los nanoplásticos es que son muy pequeños. Y, consiguientemente, la hipótesis que se maneja es que, debido a su pequeño tamaño, podría pasar las membranas celulares y, por lo tanto, acabar en las células. Dicho de otra forma, los microplásticos, que son más grandes, entrarían en su mayor parte en el intestino de un organismo para abandonarlo posteriormente mientras que los nanoplásticos podrían atravesar las membranas (y permanecerían en el organismo).

¿Diría que la preocupación pública por los microplásticos supera lo que realmente sabemos sobre ellos?

Estoy de acuerdo con la preocupación. Sin embargo, no siempre estoy de acuerdo con el razonamiento que apoya dicha preocupación. Creo que en los mensajes que se dan en los medios de comunicación, algunos de los matices se pierden (debido a la simplificación de los problemas).

¿Hay suficiente evidencia en este momento para apoyar la adopción de medidas contra los microplásticos?

Sí, porque la falta de evidencia también puede apoyar decisiones políticas. No tenemos datos sólidos sobre cuáles serán las concentraciones en el futuro, pero si hacemos una predicción razonable, usando modelos y datos podemos establecer que las concentraciones de microplásticos o nanoplásticos en el medio ambiente aumentarían a lo largo de las siguientes décadas, si no hacemos nada.

¿Qué debemos hacer para abordar este problema?

No hay remedios mágicos o, lo que es lo mismo, una única solución que pueda resumirse sin mas en un par de frases. Creo que la solución tiene que venir de una combinación de cosas. ¿Existen alternativas para algunos de los plásticos que usamos de forma que podamos usarlos menos? ¿Puede haber otros materiales que puedan usarse en los productos para que haya menos plásticos? ¿Podemos reemplazar algunos de los polímeros por otros que causen menos efectos? Y, finalmente, ¿cómo hacemos todo eso?. Y es ahí donde está el papel de la política para estimularlo.

¿Cuánto tiempo tenemos para abordar el problema de los microplásticos?

Creo que debería comenzar ya. Hay mucho interés por el tema actualmente, hay fondos disponibles para la investigación en el tema, hay mucho movimiento hacia las cosas que acabo de mencionar. Es comprobable que hay muchos grupos que se han dado cuenta del problema y comienzan a moverse para cambiar. Así que creo que eso es algo bueno.

El primer efecto generalizado que podría esperarse de los microplásticos se daría en décadas, quizás 50 años o 100 años.

La buena noticia sobre el plástico es que se puede revertir. Creo que es factible reducir en gran medida las fugas al medio ambiente, hasta el punto de que estos riesgos sean menores o estén ausentes o sean insignificantes. No hay un riesgo generalizado por ahora y al menos podemos hacer algo para que no se convierta en un riesgo generalizado en las próximas décadas.


#FIN DE LA ENTREVISTA#

Así que la próxima vez que algún activista os cuente algo (generalmente en tono alarmista) sobre los efectos de los microplásticos, recordad a Koelmans y el informe de la SAPEA. Y eso que en la entrevista el holandés no cuenta todo lo que sabe. Tendremos que volver sobre él y su producción científica en breve.

Leer mas...