jueves, 15 de octubre de 2020

Plásticos "Bio"

Tengo amigos y seguidores del Blog que me mandan noticias, vídeos o enlaces de webs con temáticas que intuyen que pueden servir para escribir una entrada, algo que les agradezco en el alma porque, después del tiempo que llevo escribiendo y de las temáticas abordadas, a veces se hace difícil enfrentarse a una página en blanco y escribir una más. Uno se consuela pensando que ha oído a escritores con oficio que eso es lo mas difícil de su profesión así que, en el caso de un modesto amateur como un servidor, la cosa tiene aún más mérito. La cuestión es que, en las últimas dos semanas, varios de esos amigos me han hecho llegar un artículo del New York Times titulado "Por qué biodegradable no es lo que tú piensas" y me veo un poco forzado a comentarlo, aunque los habituales ya habéis leído bastante sobre el tema.

El artículo está escrito por John Schwartz, un conocido periodista que ha pasado por varios medios importantes de EEUU y que, en los últimos tiempos, está especializado en cuestiones medioambientales y, particularmente, en el asunto del cambio climático, alineado con la llamemos ortodoxia sobre el tema (lo digo para poner sus opiniones en contexto). La tesis del artículo es que elegir productos cuyo envasado lleva reclamos publicitarios del tipo biodegradable o compostable puede que haga que el consumidor se sienta reconfortado por elegirlos como alternativa a los envases de plástico convencional. Pero habría que avisar al citado consumidor que no debe engañarse. La letra pequeña de esos envases "verdes" puede esconder que solo se degradan bajo especiales condiciones o que pueden llegar a complicar el reciclado de los plásticos convencionales, hoy por hoy mucho más abundantes. Y para ilustrar esa tesis, el artículo cuenta algunos ejemplos de envases hechos de materiales que se están publicitando como biodegradables. Dos de los cuales ya han pasado más de una vez por este Blog. Podéis ver mis opiniones sobre ellos aquí y aquí que, básicamente, están de acuerdo con el tono general del artículo de Schwartz. Pero para no volver a hablar sobre el tema (salvo mutaciones importantes) voy a dejar clara mi actual postura sobre el mismo en unos cuantos epígrafes.

La exigua producción global anual de los llamados Bioplásticos se resume bien en la gráfica que ilustra la portada (y que podéis ampliar clicando en ella), figura que recoge los datos del último año (2019). Colgada en la página de la asociación europea de Bioplásticos, nos dice que la producción fue un poco superior a 2 millones de toneladas, de los que solo el 55% son verdaderamente plássticos biodegradables, entendiendo por tales los que bajo la acción de microorganismos, se descomponen totalmente produciendo anhídrido carbónico (CO2) y agua. El 45% restante en esa gráfica llevan el prefijo bio por estar obtenidos de fuentes renovables (biomasa). Pero una vez obtenidos son tan poco biodegradables como sus homónimos obtenidos del petróleo. Sobre esto también hablamos en el caso concreto del denominado bio polietileno. Lo de exigua producción con lo que empiezo el párrafo resulta de comparar esos 2 millones de toneladas de bioplásticos de uno y otro tipo con la producción global de polímeros en el mundo (mas de 360 millones de toneladas anuales).

De esa parca cifra de polímeros biodegradables solo son compostables los que cumplan además otra serie de especificaciones adicionales. Y así, la norma europea EN 13432 establece que para ser denominado compostable, el material debe biodegradarse en al menos un 90%, en condiciones estandarizadas de temperatura (preferiblemente a 58ºC) y en un tiempo no superior a seis meses. Ese sería un material que podría llevar las etiquetas de biodegradable y compostable y, por tanto, utilizable, por ejemplo, como bolsa de basura orgánica para que vaya directamente a los procesos de compostaje de las plantas de tratamiento de residuos. Evidentemente, un material puede ser intrínsecamente biodegradable pero no cumplir esas condiciones de tiempos, temperaturas, etc., lo que le pone trabas como compostable. Así que resumiendo, todos los compostables deben ser biodegradables, pero ser biodegradable no asegura ser compostable.

En tercer lugar, los biodegradables y/o compostables se están "vendiendo" como soluciones al problema de los plásticos en el mar. En la propia revista de la ya mencionada asociación europea de Bioplásticos se ha reconocido no hace mucho que los estándares definidos para establecer si un plástico es biodegradable o compostable se refieren exclusivamente a cuando se sitúan sobre el suelo de la corteza terrestre, no en el agua de mar, donde las condiciones de temperatura, luz, pH, salinidad, etc. son muy diferentes .

Y cuarto y fin, si esos polímeros biodegradables se introducen en las lineas de reciclado mecánico que tratan los polímeros más convencionales, pueden dar lugar a problemas adicionales a los que ya vimos en la entrada anterior. Por ahora son poco notorios pero irían a mas si se incrementara su producción, lo que implicaría tener que realizar una separación selectiva de los mismos.

En resumen, este es otro ejemplo en el que se demuestra que algunas de las alternativas "verdes" que se nos han ofrecido en los últimos decenios no son tales. Por muy verdes que parezcan sobre el papel, todo se puede volver en su contra cuando se comprueban las consecuencias de su uso en condiciones reales. El problema es que lleva tiempo reconocerlo y, mientras tanto y por lo general, se emplea dinero público en subvencionarlas. No tenéis mas que recordar el caso de los biocombustibles...

Leer mas...

lunes, 28 de septiembre de 2020

Plásticos "circulares"

Todos estaréis acostumbrados a ver en los medios de comunicación el término Economía Circular como una de las grandes herramientas para afrontar una serie de retos medioambientales que tenemos enfrente. El término se usa en clara contraposición al de Economía Lineal, que emplea materias primas para fabricar productos que se venden a los consumidores y que estos, tras su uso, desechan como basura. Por su simplicidad no es raro que haya sido adoptado con rapidez por políticos e Instituciones. Pero, como ha explicado varias veces mi amigo, condiscípulo y destacado miembro de la Cosecha del 74 de la Facultad de Químicas de Zaragoza, Antonio Valero, Director del CIRCE zaragozano, la Economía Circular es un concepto ilusorio, un mito, ya que la Segunda Ley de la Termodinámica nos indica la irreversibilidad de los procesos reales. Cualquier material, en su uso, se degrada espontáneamente y revertirlo a su condición original cuesta más energía que la que se disipó en esa degradación. Aún y así, el Profesor Valero entiende que hablar a la ciudadanía de Economía Circular es necesario como forma de denunciar los problemas de la Economía lineal. Algo en lo que no estoy del todo de acuerdo con mi amigo, pero eso es otro tema.

A la hora de aplicar el concepto de Economía Circular a los plásticos, reciclarlos es la primera alternativa que todo el mundo parece tener clara. De nuevo, en términos muy simplistas, imaginamos un proceso en el que los residuos plásticos pueden recogerse, fundirse en máquinas adecuadas y moldear con ellos nuevos objetos en plástico. Este tipo de reciclado, conocido como Reciclado Mecánico, tiene en realidad poco recorrido como circular. Incluso en el caso del material que se suele poner como ejemplo para explicarlo: el PET o polietilen tereftalato, el material con el que se fabrican la inmensa mayoría de las botellas de agua y otras bebidas. En su versión más avanzada, en sitios como Suecia, se recogen las botellas de agua en un contenedor exclusivo para ellas y se envían a las empresas que las reciclan, sin consumir tanta energía como la necesaria para separar selectivamente, limpiar y secar los diferentes plásticos que van a nuestro contenedor amarillo. Pero aún en ese caso tan particular del PET, su reciclado mecánico está lejos del concepto de Economía Circular. Como bien demostraba un artículo publicado hace 25 años por colegas de mi Departamento, entre los que se encontraba el llorado Iñaki Eguiazábal, mi primer estudiante de Doctorado y luego Catedrático de Ciencia de Materiales de la UPV/EHU [Macromol. Sci, Part B 34, 171-176 (1995)], el PET va perdiendo propiedades muy importantes para su uso en botellería cuando se le somete a unos pocos reprocesados. Mas allá de cinco reprocesados (o reciclados) el PET no vale prácticamente para nada. Y en los cuatro anteriores tampoco puede usarse para fabricar botellas con los requerimientos que piden muchos envasadores de agua, por lo que se usa, como poliéster que es, para fabricar cosas como alfombras o bolsas de todo tipo. Si os fijais en los objetivos de muchos empresas que envasan sus productos en botellas de PET, actualmente están fijándose objetivos de emplear en ellas un cierto porcentaje de PET reciclado, no el 100%.

Es por eso que, en ejemplos como el que acabamos de relatar, Antonio Valero aboga por sustituir el concepto de Economía Circular por Economía Espiral, al tener en cuenta que los ciclos no se cierran infinitamente como debería ocurrir en una Economía Circular pura y lo que es interesante es conocer cuantos ciclos son posibles en cada material para estimular, en lo posible, la mejora de los procesos para extender ese número. Pero, al final, siempre quedará un residuo inservible y la mejor solución (a mi entender y en el caso de los plásticos) para eliminarlo son las incineradoras modernas que recuperan en forma de energía térmica o eléctrica la eliminación de esos materiales. La pega del asunto es la génesis inevitable de dióxido de carbono (CO2), algo que puede mejorarse pero, en cualquier caso, el CO2 que proviene de la gestión de residuos es un componente menor en el cómputo global de las emisiones de ese gas, frente a grandes emisores como el transporte, la industria, la calefacción,.... En España, la gestión de residuos supone en cuanto a emisiones de Gases de Efecto Invernadero (GEI) entre un 3-4% del total. De ahí un 80% son emisiones de CO2 (el resto es metano y otros), en las que se incluyen el CO2 generado en los vertederos, en la incineración de residuos de origen fósil (ahí irían los plásticos), el tratamiento de aguas residuales, etc.

En el caso del PET de botellas, hay otra forma de reciclarlo mediante el llamado Reciclado Químico. Básicamente la idea es volver hacia atrás la reacción que produjo ese plástico y obtener las sustancias de partida que lo generaron. Esa operación se puede hacer mediante enzimas o mediante procesos químicos conocidos como hidrólisis o metanolisis (no iremos más lejos con este lío que luego me increpais). En otros polímeros, como el poliestireno del Poliespán o el polietileno de las bolsas de basura y muchos envases de detergente, la alternativa para reciclar químicamente es aplicar calor. Cuando esos materiales que acabo de mencionar se someten a altas temperaturas en un proceso llamado Pirólisis, se puede obtener estireno, un líquido a partir del cual volver a sintetizar el poliestireno o, en el caso del polietileno, unas mezclas de hidrocarburos (naftas), similares a las obtenidas en las destilaciones fraccionadas del petróleo o la hulla y que, adecuadamente tratadas en plantas petroquímicas, generan, entre otros, el gas etileno, a partir del cual puede obtenerse de nuevo el plástico polietileno. En estos casos que acabamos de mencionar en este párrafo, el ciclo parece cerrarse de manera más eficiente, pero no es oro todo lo que reluce. En el caso del PET porque purificar las sustancias de partida tras cargarnos el polímero no es una cuestión baladí y en el caso de la pirólisis del poliestireno o del polietileno porque no produce, exclusiva y respectivamente, estireno y etileno, sino otras muchas sustancias químicas algunas de las cuales pueden ser casi inservibles o incluso indeseables. Y además, en la mayoría de los estudios realizados sobre el Reciclado Químico muestran que, para ser viable, las compañías tendrían que construir plantas de gran tamaño mediante grandes inversiones y necesitarían grandes cantidades de residuos plásticos, lo que plantea problemas de logística dependiendo de donde esté situada la planta.

Todos estos inconvenientes no son nuevos. La pirólisis de residuos plásticos es un asunto que reaparece cual Guadiana desde hace tiempo. Hace casi treinta años, este vuestro Búho escuchó en Hamburgo una charla del Prof. Walter Kaminsky, de la Universidad de esa ciudad alemana, seguida de una visita a una localidad próxima en el que se había instalado una planta experimental que podía tratar unos pocos miles de toneladas anuales de basura plástica, obteniendo una mezcla de gases y líquidos utilizables en plantas petroquímicas. Un poco más tarde Kamisnky plasmó esas ideas en varios artículos, entre otros en este. Pero ya entonces nos avisó de que si el petróleo cotizaba por debajo de 120$/barril (y hablamos de valores de hace treinta años!!), el proceso era económicamente inviable. Hoy, con el crudo por los suelos, la idea persiste. A no ser que gravemos el petróleo con unas tasas que permitan equiparar costes.

Aún y así, grandes productores de polímeros parecen apuntarse a la actual ola del Reciclado Químico. Esta pasada semana, sin ir más lejos, he podido asistir on line a un Seminario al respecto, en el que, para mi, lo más interesante han sido las contribuciones de técnicos de empresas tan importantes como REPSOL, BASF o SABIC. Mi impresión general es que algo se está moviendo una vez más, pero despacio. Y que el mayor mérito de este tipo de reciclado parece estar en la menor huella de carbono que dejan con respecto al uso de materias primas derivadas del petróleo. Pero como en el asunto de los polímeros biodegradables, que sigo desde hace casi cuarenta años y pocos avances he contemplado, aquí, visto lo que voy viendo, me pasa algo parecido y acumulo un razonable escepticismo. De nuevo, lo que me fastidia, es que me voy a morir antes de poder comprobar si estoy en lo cierto.

Leer mas...

lunes, 21 de septiembre de 2020

Pañales y polímeros

Dice mi hermana que, dada nuestra genética, es posible que los Iruines lleguemos a muy mayores lo que supone, entre otras cosas, que tengo muchos boletos para ser un usuario de pañales, si una muerte súbita no lo remedia. No es un futuro prometedor, pero es lo que hay. Para que os vayáis concienciando del problema, que ya se sabe que a cada cerdo le llega su San Martín, os voy a contar la escatológica historia del desarrollo de estos utensilios, uno de esos ejemplos en los que el ingenio humano ha sido capaz de desarrollar, en un corto espacio de tiempo, algo que ha resultado fundamental en nuestra actual vida cotidiana. Al principio, durante la segunda mitad del siglo XX, consiguiendo una sustancial mejora en la vida de los jóvenes progenitores para, más tarde, resultar una pieza clave en el cuidado de los ancianos, un colectivo que cada día se engrosa más.

El desarrollo de los pañales está bien documentado en multitud de artículos, blogs y vídeos, y podríamos iniciar su historia a finales del siglo XIX, cuando se inventó el imperdible (o safe pin para los ingleses), que permitió sujetar con cierta prestancia trozos adecuados de tela alrededor de los bajos de los niños. Pero ese adelanto no obviaba el tener que lavar esos pañales ni tampoco aseguraba que no se produjeran pérdidas de fluidos que mancharan otros elementos de las cunas infantiles. En muchos sitios de internet, la primera mutación de los pañales parece arrancar con una joven madre cabreada de nombre Marion O'Brien Donovan que, harta de cambiar pañales a su primogénita y de lavarlos junto con sábanas, mantas y otros utensilios, decidió elaborar una especie de braguita con una cortina de baño de la época, fabricadas entonces con un plástico llamado poliamida (nylon), muy usado tras la Segunda Guerra Mundial ya que se había empleado en la confección de paracaídas y había excedentes.

El invento no suponía más que solucionar (en parte) el asunto de las pérdidas, pero no el de cambiar y lavar el paño de tela que la braguita sujetaba. Tras ese primer invento, la Sra. Donovan dió un paso más en el diseño de pañales de dos componentes, sustituyendo la tela por un material desechable a base de papel de celulosa más o menos grueso que retenía los líquidos hasta cierto punto y se podía cambiar una vez empapado, tirandolo a la basura. La historia de Marion Donovan está muy bien contada en el blog Mujeres con Ciencia que tantas veces os he recomendado. Pero Marion Donovan no fué la única que anduvo buscando soluciones para el problema de las deposiciones infantiles. Paralelamente, hubo otros intentos en Europa y Norteamérica, como es el caso de una joven madre británica, Valerie Hunter Gordon, quien, en 1947, diseñó un pañal a base de papel, algodón y un pantalón impermeable. Mi suegra, otra madre joven a finales de los cincuenta, todavía se acuerda de pasar la frontera y acercarse a Hendaya para comprar una variante francesa, La Bambinette, un anuncio de la cual se ve en la foto que ilustra la entrada. Esta fase de inventos acabó con la introducción por Procter & Gamble, en 1961, de los llamados Pampers en los que en lugar de papel se usaban, como material absorbente, unas gasas de celulosa. Pero la capacidad de absorción de líquidos era muy límitada en todos los pañales que venimos mencionando. Paralelamente al cambio de materiales absorbentes, en esa fase también se introdujeros algunos otros polímeros en el diseño de pañales, generalmente como componentes de la braguita externa, así como de los cierres de la misma (donde se hizo popular nuestro conocido Velcro).

Pero cuando los polímeros irrumpieron de verdad en el mundo de los pañales fue cuando dos patentes presentadas en 1966 por Carlyle Harmon (de Johnson & Johnson) y Gene Harper (de Dow) describieron lo que hoy en día se conoce como polímeros superabsorbentes (SAPs), materiales que, en algunos casos, son capaces de retener agua hasta mil veces su propio peso, aunque los usados en pañales andan entre 30-50 veces. Constituidos, generalmente, por un polímero denominado poliacrilato de sodio pero con mucha "música" más que se guardan celosamente los fabricantes, el truco consiste en encerrar ese material en una cubierta de material celulósico, habilitando así un "sumidero" para el agua de la orina y la contenida en las heces, transformando con ello el polímero en un gel que retiene el agua y evita su salida al exterior. Poniendo además dos capas de polietileno o polipropileno (una hacia el exterior y otra hacia la piel) tenemos los pañales actuales, que se venden como rosquillas, dadas las necesidades de la práctica totalidad de los recién nacidos y de muchas (cada vez más) personas de edad. Por solo dar algún dato en este caso y en el país con mayor proporción de ancianos, Japón, el mercado de los pañales para adultos superó al de pañales para niños en 2011 y en el momento actual supone una cifra de negocio de más de dos mil millones de dólares anuales, un 20% del mercado global de pañales para adultos.

A nadie se le escapa que esa progresiva implantación de los pañales en los ámbitos que acabamos de mencionar tiene la contrapartida de que, globalmente, entre 20 y 25 millones de toneladas de pañales desechables son quemados o depositados en vertederos cada año. Aproximadamente, el 80% de ellos está constituido por agua, lo cual no es una buena noticia para las dos posibles formas de deshacerse de tan molesto residuo. En el caso de los vertederos (cada vez peor vistos y progresivamente eliminados) porque ese agua puede dar lugar a lixiviados poco recomendables en combinación con las heces también contenidas en los pañales. En el caso de las incineradoras, porque ese aporte de agua hace que el rendimiento calorífico de esas ingentes cantidades de pañales desechables los hagan poco deseables como combustible de las nuevas instalaciones, cuyo objetivo es generar energía a base de la quema de desechos.

Así que hay mucha gente pensando en cómo resolver el problema. Además de procurar usar cada vez menores cantidades del polímero superabsorbente, empleando variantes del mismo con mayores capacidades de absorción, de usar cubiertas internas y externas más delgadas y cantidades menores de celulosa (dentro de lo posible) en la parte central de nuestro pañal, el Ministerio japonés de Infraestructuras ha urgido recientemente a las empresas niponas a buscar métodos para eliminar el agua y las heces de la forma más eficiente posible e incorporarlas a los flujos de aguas residuales, como fase previa para poder recuperar el polietileno, el poliacrilato sódico y la celulosa, tratando de buscar asi "segundas vidas" para esos materiales o, si no fuera posible, incinerarlos con mayores rendimientos energéticos. También en Euskadi hay proyectos que se han centrado en esa idea, como el llamado Proceso Birzifar de la empresa de Ordizia Birzitek Waste Engineering.

Claro que siempre hay una solución radical. Dejar de usar pañales desechables. Basta darse una vuelta por internet para ver cómo han proliferado los grupos que abogan por volver a los pañales de tela y abandonar esas auténticas piezas de tecnología que son los pañales modernos a base de SAPs. La mayor parte de las páginas que he leído con ese sesgo son de madres jóvenes que ya lo aplican con sus niños. Hay, incluso,un mercado emergente sobre estos "nuevos" pañales de tela. Sobre los pañales para viejos se escribe poco. Pero tengo en mi entorno próximo personal sanitario, de cierta edad, que no quisieran volver a la situación de atender viejos provistos con pañales del siglo pasado. Y, por lo que me puede tocar, yo tampoco.

Leer mas...

martes, 25 de agosto de 2020

Viejas y nuevas espumas de café

No se puede decir que sea un adicto al café. Mi dosis se limita a uno (largo) por la mañana y otro (más corto) tras la comida. Pero soy un seguidor contumaz de todo lo que tenga que ver con la Química del café y de ello hay constancia en una serie de entradas que podéis obtener con solo escribir en el buscador de arriba a la izquierda la palabra café (importante el acento). En una taza de ese brebaje hay cientos, rondando los miles, de moléculas químicas distintas, provenientes tanto del grano original desarrollado en muchas plantas de café (o cafetos) como de los procesos relacionados con su consumo. Sobre todo del proceso de tostado a altas temperaturas (por encima de 200ºC) en el que, merced a una serie de complejas reacciones químicas, entre las que se encuentran las varias veces mencionadas reacciones de Maillard, se generan un gran número de las sustancias que acaban en una taza de café. Algunas, como la acrilamida, no son precisamente angelitos de la Virgen.

En la más antigua de las entradas sobre la Química del café en este Blog, se hacía referencia a un artículo publicado en Scientific American en 2002 y firmado por Ernesto Illy, Director General hasta su fallecimiento en 2008 de Illycaffé, una empresa muy conocida en el mundo cafetero, radicada en Trieste y fundada por su padre en 1933. Don Ernesto, como todo el mundo le conocía, era Doctor en Química y había completado sus estudios con temas de Biología Molecular.

Por una serie de razones que quedarán claras al final de la entrada, me he tenido que leer otro interesante artículo de Don Ernesto. Este, publicado en la revista Food Biophysics en 2011, es un artículo póstumo de nuestro autor que, como digo, falleció en 2008. El artículo en cuestión tiene que ver con la formación de la llamada crema de un espresso a la italiana, esa espuma que se forma cuando un buen barista prepara un café en una adecuada máquina. Con independencia de los muchos bulos que corren sobre la correcta preparación del mismo y de las disputas entre los negacionistas del papel de la crema en un buen espresso y de los que le conceden todo tipo de inherentes cualidades, nuestro Don Ernesto y Luciano Navarini (otro conocido experto de la Ciencia del Café) dedican su artículo a explicar la Química y la Física de la formación de una correcta crema o espuma de café.

Como ya explicábamos hace tiempo, la formación de una espuma en un líquido es el resultado de introducir un gas en ese líquido y conseguir que las burbujas derivadas del gas introducido se estabilicen al menos por algún tiempo. Y para conseguirlo necesitamos el concurso de una tercera sustancia, el surfactante o emulsificante, una molécula con capacidad para colocarse en la frontera entre el líquido y el gas, estabilizando así cada una de las burbujas de gas que hemos introducido en el líquido. Poca gente sabe, y el artículo mencionado lo cuenta muy bien, que el gas que da lugar a la crema del espresso proviene del anhídrido carbónico, o CO2, formado durante el tostado del café y atrapado en el interior de cada uno de los granos que vamos a moler para preparar un café de máquina. En esa molienda previa, una parte importante del CO2 atrapado se pierde, pero si el lapso de tiempo entre la molienda y la preparación del brebaje se minimiza, aún queda CO2 suficiente para que, a las temperaturas a las que hace pasar agua por el café molido, ese gas se incorpore al espresso y forme burbujas.

Para formar y estabilizar a estas, en lo que llamamos crema, necesitamos el concurso de un surfactante o emulsificante. Parece que, en la formación de la espuma, ese papel lo juegan las proteínas contenidas en el café que, aunque desaparecen en parte debido a las reacciones de Maillard que ocurren en el tostado, aún quedan en porcentajes en torno al 8% en el ulterior café tostado. La estabilidad en el tiempo de esas burbujas parece estar ligada a la existencia de polisacáridos de alto peso molecular como el galactomanano o el arabinogalactano. Proteínas y polisacáridos de este tipo pueden formar complejos con compuestos fenólicos que aparecen durante el tostado y que también juegan su papel en la estabilización de la espuma.

Hace unos días (y aquí viene el porqué de leerme el artículo de la crema), mis amigos del Restaurante Arzak me pidieron opinión sobre la Ciencia detrás de la preparación de una espuma con café que se estaba volviendo viral en internet desde el comienzo de la pandemia. La mejor manera para tener información sobre el asunto es poner Dalgona coffee en Google, lo que te devuelve más de siete millones de páginas relacionadas. El nombre Dalgona viene de una golosina coreana con similar sabor y color que la espuma de la que vamos a hablar ahora. La cosa no es nueva y similares preparaciones como el frappé de café griego o el café batido de los indios tienen décadas de historia.

La preparación es sencilla y basta con batir café instantáneo, agua y azúcar. En este caso, la espuma se forma gracias al aire que introducimos en la mezcla con ayuda de un agitador mecánico y no al CO2 que queda en los granos de café tostado y posteriormente molido del espresso. Pero también aquí, para que la espuma sea estable, necesitamos que las burbujas de aire no colapsen. Igual que ocurre en el espresso, la presencia de proteínas, polisacáridos y otros compuestos es la que asegura la formación y estabilidad de las burbujas constituyentes de la espuma.

Parece, según lo que he visto, que la razón por la que no se puede espumar un café preparado en máquina o mediante filtrado tipo Melitta radica en que ese café contiene una cantidad importante de lípidos, algunos de los cuales, como los ácidos grasos, desestabilizan la superficie de las burbujas al competir en ella con las proteínas emulsificantes, haciendo que sea difícil crear la espuma. Eso también lo cuentan con detalle Illy y Navarini en su artículo sobre la crema del espresso. Y en el contenido en esos lípidos parece estar también la razón por la que no todos los cafés instantáneos sean iguales a la hora preparar el Dalgona. Cuando los industriales preparan un café instantáneo tienen dos posibilidades. Partiendo del café en su forma de disolución acuosa (el café normal) hay que quitar el agua para obtener el polvo que llamamos café instantáneo. Para ese secado hay dos alternativas: el secado por pulverización de la disolución en una cámara a alta temperatura o el secado por liofilización en el que, con la ayuda de bajas temperaturas y vacío,  el agua congela y luego sublima. Este segundo procedimiento es más caro pero tiene la característica de eliminar menos volátiles del originario café (lo que intrínsecamente es bueno) pero elimina también menos lípidos, polisacáridos y compuestos fenólicos (algo malo para la confección del Dalgona ya que el espumado en su presencia es más complicado). Así que el café instantáneo más baratito es el que mejor va para el truco.

Se pueden preparar esas espumas sin azúcar pero colapsan mas rápidamente. Ello es debido a que la adición de azúcar produce dos efectos: por un lado aumenta la viscosidad de la mezcla a espumar, lo que retarda el proceso de colapso y, por otro lado, porque minúsculos granos de azúcar se colocan entre burbuja y burbuja de aire y retienen la estructura.

Me dicen los de Arzak que ellos han probado con diferentes concentraciones de café instantáneo y azúcar en agua. Y que, desde un punto de vista organoléptico, hay grandes diferencias. Aunque una mayor cantidad de café hace que haya más proteínas y otros surfactantes en el medio, lo que facilitaría el espumado, el resultado puede saber a rayos.

Estoy seguro de que ellos ya están cerca de la fórmula ideal para ofrecer algo espectacular. Pero no puedo dar más detalles porque eso entra dentro del secreto de sumario.

Leer mas...

jueves, 13 de agosto de 2020

Microfibras en el mar

Cuando en una entrada del pasado verano iniciaba aquí una serie de tres entradas sobre el problema de los microplásticos en el mar, os hablaba de una producción anual (a nivel global) de 400 millones de toneladas de materiales plásticos, pero advertía que a esa cifra había que sumarle unas 70 millones de toneladas más, provenientes del mercado de las fibras sintéticas conocidas como fibras de poliéster y poliamida, que también son plásticos en su sentido literal pero que, por una serie de razones, se suelen contabilizar aparte, junto con otras fibras de origen natural como el algodón, las fibras de celulosa modificadas, la lana, la seda, etc. En una entrada posterior, a la hora de explicar el origen de todos los microplásticos que acaban en el mar, mencioné de pasada que había una creciente sensación en la literatura científica de que las fibras constituían una parte muy importante de los microplásticos encontrados en el mar, en los seres vivos, en los suelos, etc. Y que había que estar pendiente de nuevos datos para sacar adecuadas conclusiones al respecto. Esta entrada es una puesta al día sobre la presencia de microfibras, tanto sintéticas como naturales, en el mar.

La gráfica que ilustra esta entrada (y que se amplia clicando en ella) es un poco antigua (2015), pero muy ilustrativa para lo que os quiero contar hoy. En el eje vertical de la izda se representan, desde 1960, los millones de toneladas de fibras producidas a nivel mundial, como suma de los cuatro tipos más importantes: fibras sintéticas de poliamida y poliéster (denominadas Man made, non-cellullosic en el gráfico, área verde), algodón (cotton, en azul), celulosas modificadas  como el rayón o la viscosa (Man made cellullosic, en morado) y lana (wool, en rojo). Puede observarse que mientras que los tres últimos tipos de fibras no han crecido mucho desde 1960 (el algodón algo más), el dato final de 2015 muestra que la lana, el rayón y la viscosa juntos andaban por 6 millones de toneladas anuales, mientras el algodón estaba cerca de los 25 millones de toneladas y las fibras sintéticas alcanzaban los 60 millones  de toneladas anuales y creciendo rápidamente.

Dado que, repito, lo que todo el mundo entiende por plásticos andan ya en los 400 millones de toneladas anuales, parece lógico pensar que los microplásticos encontrados en el mar  y los otros ámbitos arriba mencionados (incluidas las anchoas), tendrían que ser, sobre todo, de esos plásticos comerciales provenientes de recipientes de todo tipo,  de filmes y de la multitud de objetos que fabricamos en plástico. Pero, como decía arriba, la literatura reciente está acumulando artículos en los que se muestra que las micropartículas antropogénicas más habituales en casi todos los ámbitos investigados son precisamente las fibras (lo que también pasaba en las anchoas, en la entrada mencionada arriba), lo que no deja de ser sorprendente.

El asunto de las microfibras en el mar está muy bien revisado y explicado en un reciente artículo publicado en junio de este año en la revista Science Advances [DOI: 10.1126/sciadv.aay8493] por un grupo de investigadores australianos, sudafricanos e italianos. Sobre la base de casi 1000 muestras de agua de mar superficial, recogidas en más de 600 localizaciones situadas en cuencas oceánicas que cubren zonas del Mediterráneo, el Índico, el Atlántico Norte y Sur y diversas zonas del Océano Austral, llegan a unos resultados que me han parecido lo suficientemente relevantes (y, como digo, sorprendentes) que os voy a relatar.

De acuerdo con sus datos y tras el adecuado análisis de las muestras por Microespectrometría Infrarroja de Transformada de Fourier, la mayoría de las microfibras que ellos han encontrado en la superficie del mar no son precisamente fibras sintéticas como los poliésteres y las poliamidas, a día de hoy las que más se fabrican y que podrían conceptuarse claramente como microplásticos. Por el contrario, las fibras de origen celulósico suponían casi el 80% de todas las fibras recogidas, tanto en sus versiones naturales (algodón, lino, yute,..), como en las químicamente modificadas (rayón y viscosa), aunque casi la mitad de ellas eran de algodón. Un 12% de las fibras recogidas eran de origen animal (lana, seda) y solo el 8% restante eran de origen puramente sintético (poliésteres y poliamidas).

En un intento de buscar una explicación a ese resultado, los autores especulan sobre posibles diversas causas, como la mayor biodegradabilidad de las microfibras sintéticas, algo poco plausible, el hecho de que quizás en los lavados y diversos usos de prendas y materiales con esas fibras sean las de origen celulósico las que más fibras suelten (cosa que habría que verificar). Pero la que más me ha convencido, y no había pensado nunca en ella al considerar la contaminación por fibras en el medio ambiente, es que los humanos llevamos siglos usando materiales a base de algodón, lana, seda y similares. Y solo desde hace menos de un siglo empezamos a vestirnos con fibras sintéticas. Así que la acumulación de fibras naturales en el medio ambiente pudiera ser el producto de ese prolongado uso y, si no hemos reparado en el problema hasta ahora, es porque no teníamos con qué verlas, caracterizarlas y cuantificarlas adecuadamente. Es algo parecido a la contaminación de mercurio en la Tierra que solo hace pocos años hemos analizado en detalle, cuando ya los romanos (y otros pueblos aún antes) usaban mineral y derivados de mercurio para diversos usos de su vida normal. Una de mis más antiguas entradas (un poco larga, cierto, pero de las más visitadas) lo contaba al final.

Eso lleva a los autores a manifestar otro punto de vista igualmente interesante. Las cifras de los llamados genéricamente microplásticos presentes en el mar (ya sea en superficie o en el fondo), en el aire de las grandes ciudades, en lugares recónditos como el Ártico o montañas poco accesibles, están hinchadas por la inclusión en ese término de todo de tipo de fibras recogidas en los rastreos y en los que, como se ve, las fibras naturales de algodón o de lana aportan un componente importante. Todo ello dicho con las adecuadas prevenciones, lo que lleva a los autores, como suele ser habitual, a pedir que se investigue mucho mas en el tema.

Así que si ya teníamos problemas en ver dónde está todo el plástico corriente que se vierte a los océanos (algo que ya tratamos en la entrada antes mencionada) tendremos que seguir comprobando si estos datos recientes sobre la prevalencia de las fibras en el mar se siguen confirmando y, en su caso, buscar razones convincentes para esa masiva presencia o dar por hecho que el uso histórico de las fibras naturales es, en el fondo, el causante de lo que estamos viendo.

Leer mas...

martes, 28 de julio de 2020

Los cables de Apple y Greenpeace.

La pasada semana, el sitio web denominado Applesfera.com contenía un pequeño artículo en el que se filtraba la apariencia de lo que parece va a ser el cable de conexión para cargar los inminentes iPhone 12 de la firma de la manzanita. Después de dar las características de los conectores en ambos extremos del cable, el autor, Miguel López, dice que "lo que cambia es el material y los acabados: en vez de la tradicional goma que siempre acaba rompiéndose alrededor del conector,.....". Alguno pensará que qué hace el Búho, defensor acérrimo del entorno Apple desde hace treinta y cinco años, reconociendo que los cables que usa Apple son una mierda. Pues sí, una mierda son. Y detrás de esa mala calidad está una historia, conocida desde hace tiempo, que quiero contar con mi especial toque polimérico.

Una de las características de los plásticos es su carácter no conductor de la electricidad. Es por eso que, desde su irrupción en el mercado, el denostado PVC o policloruro de vinilo se ha utilizado (entre otras muchas cosas) como cubierta protectora de los cables eléctricos de nuestras casas. Su evidente flexibilidad es además debida a que ese PVC suele llevar como aditivo un cierto porcentaje de los también denostados ftalatos. Así que, a pesar de los intentos por sustituirlo, la mayoría del cableado de nuestros pequeños electrodomésticos, lámparas, material informático y muchas más cosas está recubiertos con una capa de PVC.

En el año 2009 Greenpeace, en línea con su tradicional ataque a todo lo que contenga cloro (como es el caso del PVC) que ya vimos en una reciente entrada, presionó con éxito a Apple para que eliminara ese plástico de sus cables, una condición que la ONG les ponía si querían presumir de producto verde o ecológico. Y ese es el origen de la obsolescencia ("provocada" más que programada) de los cables de la empresa de Steve Jobs. Ahora Apple puede proclamar en su web, y en el apartado de su preocupación por el medio ambiente, que todos sus productos están libres de PVC. Un gran triunfo para Greenpeace, al domeñar a tamaña empresa, pero no para Apple. Porque, como consecuencia de ello, miles de millones de cables se han deteriorado en periodos de tiempo que no son acordes a los estándares de calidad de esa empresa, acabando en vertederos o incineradoras. Y muchos usuarios cabreados (incluido un servidor) hemos acabado comprando cables para cargadores de otros proveedores. Algunos de marcas conocidas y fiables y otros de marcas sin padre ni madre, en muchos casos provenientes de China y cuya composición no controla nadie (tampoco Greenpeace). Pero casi todos ellos recubiertos de PVC, como también lo están la mayoría de los cables de los grandes competidores de Apple en el mercado de los dispositivos electrónicos.

Establecido el origen y culpabilidad del problema, tratemos de desenmascarar al material que está teniendo tan malos resultados. En algunas webs y foros en los que la gente se queja de cómo se le estropean sus cables, se habla de que están constituidos por un caucho. Algo de verdad hay en esa afirmación pero, para saber con certeza de qué están hechos, vuestro Búho ha recurrido a dos viejas compañeras de Facultad y Departamento, que te destripan la composición de una pieza de plástico en menos tiempo que te tomas una cerveza.

El recubrimiento de marras de los actuales cables de Apple está constituido por lo que técnicamente se conoce como un poliuretano termoplástico (TPU es el acrónimo en inglés), perteneciente a una familia de materiales con muchos usos. Este que nos ocupa, y según mis colegas, se obtiene haciendo reaccionar dos sustancias que, genéricamente, los químicos bautizamos como un poliol y un diisocianato. El producto que resulta tiene propiedades (por ejemplo su elasticidad) similares a las de los cauchos que mencionaba antes. Según el análisis realizado, ese recubrimiento lleva también un 10% de carbonato cálcico cuya misión es darle el tono blanquecino y abaratar el producto.

¿Son los cables recubiertos de este TPU más verdes que los recubiertos con PVC?. Si yo fuera alguien como el famoso Prof. Olea, tan mencionado en estas páginas, podría contestar negativamente a esa pregunta y deciros que el isocianato empleado al fabricarlo, conocido como MDI, es una sustancia que, en muy pequeñas trazas en el ambiente, pueden ocasionar problemas respiratorios serios. Pero, como no soy Olea, matizaré que se lleva usando años en la fabricación de este tipo de poliuretanos sin problemas evidentes. La razón fundamental descansa en el hecho de que, al formarse el poliuretano termoplástico, el MDI prácticamente desaparece como tal (algo similar a lo que le ocurre al Bisfenol A de Olea al fabricarse el policarbonato o una resina epoxi).

Como mis amigas tienen el mercado controlado, incluso se han aventurado a decirme que el poliuretano empleado podría ser un producto del catálogo de Covestro, una empresa generada en 2015 a partir de la división de polímeros de Bayer. La marca registrada para el TPU es Texin.

Veremos si el nuevo cable que parece que vendrá con los futuros iPhone 12 hace acallar los cabreos de los usuarios. Mientras tanto, hoy mismo, he tenido que comprar un cable para el iPad de mi suegra quien, con sus 95 primaveras y la cadera un poco maltrecha después de una caída a finales de mayo, sigue jugando Apalabrados online. Y aunque, ciertamente, no trata muy bien al cable, la culpa no es de ella sino de Greenpeace.

Leer mas...

lunes, 20 de julio de 2020

Regresion lineal y la temperatura del agua del Aquarium de Donosti

Hace años, en un Tribunal de Tesis, un reputado químico teórico, con petulante suficiencia, nos espetó a otros químicos, dedicados a medir cosas con aparatos, que lo único que nos preocupaba en nuestro trabajo "era conseguir que los puntos experimentales se ajustaran a una recta". Como ocurre en la figura, cuyo significado explicaré cuando os introduzca a la curiosa historia que ha generado esta entrada y que, como jubilata pertinaz, me ha tenido muy entretenido, entre otras muchas cosas, desde hace casi dos meses.

Todo empezó con la publicación, el pasado 2 de junio y en el Diario Vasco, de un artículo cuyo enlace es inútil que os ponga porque es de pago y cuyo título rezaba "El mayo con la temperatura del agua más cálida de los últimos 75 años". El artículo explicaba que tal dato se desprende de la serie histórica con la que cuenta el Aquarium de San Sebastián, lugar en el que, desde 1947, todos los días de mañanita y a la misma hora, se mide la temperatura del agua en sus inmediaciones.

El Aquarium es una Institución que me ha acompañado a lo largo de mi ya larga vida. He paseado infinidad de veces por sus inmediaciones, lo he visitado otras muchas desde niño, con mis padres, con la Búha o con amigos foráneos, comprobando su evolución más reciente de la mano del gran señor que era D. Vicente (Bixente) Zaragüeta, hernaniarra como este vuestro Búho pero de otro nivel, amigo personal de mis padres y nieto de D. Vicente Laffite, uno de los promotores del Aquarium, inaugurado en 1928. Incluso, hace años, fui convocado como experto en polímeros, cuando hubo un serio problema con el decorado del gran estanque de los tiburones, fabricado a base de poliuretano. En otro orden de cosas pero que tiene que ver con lo que aquí voy a contar, desde hace casi veinte años y aunque mi formación no es la adecuada, he leído muchas cosas ligadas a la climatología, incluidos los voluminosos informes del Primer Grupo de Trabajo del Panel Internacional de Cambio Climático (IPCC) o el más reciente informe del mismo Panel sobre el Océano y la Criosfera (setiembre 2019), algo que, sin falsa modestia, no creo se haya leído mucha gente.

Así que, con esa curiosidad por lo climático y esa proximidad al Aquarium, decidí hacerme con la citada serie histórica. Y como conozco gente en el Diario Vasco, pedí las coordenadas de la autora del artículo y le escribí un email. Me contestó enseguida pero, para mi sorpresa, me dijo que ella no tenía esa serie histórica y que los datos que aparecían en la primera figura de su artículo los había sacado de una cuenta de Twitter, cuyo enlace me enviaba. Y, efectivamente, allí estaban los datos de una serie de mayos, ordenados de la misma forma que en la gráfica mencionada. Como en ese tuit aparecía una cuenta de Twitter del Aquarium, les escribí un mensaje preguntado cómo podía obtener la serie histórica completa. Me contestaron diligentemente, dándome una dirección de correo electrónico del propio Aquarium. Cuando escribí a esa dirección, la respuesta fue que esos datos no estaban a disposición del público pero que estaban depositados en AEMET (Agencia Estatal de Meteorología).

Pasé bastante días entretenido en rastrear la web de AEMET y en cómo darme de alta como usuario de sus OpenData, tratando de aprender a usarlos (algo que no es obvio la primera vez). Pero no había forma de encontrar datos provenientes del Aquarium. Así que, dentro de la propia web de AEMET, planteé una consulta a su Delegación en Euskadi. Me contestaron enseguida explicándome que, en virtud de no sé qué normativa europea, esos datos no eran públicos pero que me mandaban un Excel con la serie histórica de mis desvelos. Documento que ahora tengo guardado como oro en paño, dado el esfuerzo que me ha costado. Aunque no habrá forma de actualizarlo en el futuro (algo a lo que, me han dicho, tengo derecho) mientras las cosas en AEMET o el Aquarium no cambien.

Y después de este tortuoso camino os preguntaréis, ¿tenían razón el artículo y su autora?. Pues, estrictamente, sí, pero matizando y bastante. De acuerdo con ese documento Excel, la temperatura media del agua en el Aquarium el mes de mayo de 2020 fue 17,6 ºC, la más alta de todos los registros desde 1947. Seguida, en este orden, por los valores de 2011 y 1990 (17,3), 1964 (17,2) y 1950, 1961 y 2007 (16,9). Pero esa temperatura media de mayo desde 1947 oscila entre ese máximo de 17,6 de 2020 y un mínimo de 14,0 en 1984. De hecho, en una fecha tan cercana como mayo de 2019, el año pasado, la temperatura media de mayo del agua de mar fue de unos parcos 15,5ºC (fresquita dice la Búha, que para esas alturas del año ya se suele haber bañado alguna vez).

Pero lo importante en el seguimiento de una magnitud climática es ver su evolución a lo largo de series históricas de un número importante de años. En este caso tenemos una serie de 74 años (1947-2020), no muy larga pero importante. La figura que ilustra la portada, que podéis ampliar clicando en ella, muestra la evolución de la temperatura media de mayo del agua del Aquarium en ese intervalo de tiempo. Incluso los que no estéis acostumbrados a ver gráficas de datos, os resultará evidente que mucha tendencia no parece advertirse.

Pero recordando al que criticaba que los químicos solo buscamos que los puntos se ajusten a una línea recta, podemos intentarlo con esta serie histórica. Usando las herramientas del propio Excel, podemos pedirle que nos ajuste esos datos a una recta. Muy obediente, Excel lo hace y nos muestra, además de la línea de puntos que se ve, la ecuación matemática a la que responde esa recta: y = 0,0012 x + 13,25 y un enigmático R2 = 0,008. Vamos a explicar estos resultados para los no iniciados.

El valor 13,25 es el valor que toma la magnitud representada en el eje vertical (la temperatura del agua) cuando en el eje horizontal nos fuéramos hasta el año cero (hace dos mil veinte años) y asumiéramos que, desde 1947 hasta ese año cero, la tendencia fuera la que la ecuación indica. Es poco o nada relevante para lo que discutimos aquí. El otro valor, 0,0012, es lo que sube, en promedio, la temperatura del agua del mar en el Aquarium por cada año transcurrido. Es decir, según esa ecuación (o la linea dibujada), la temperatura del agua del Aquarium estaría subiendo desde 1947 algo más de una milésima de grado (0,0012) por año o, en otros términos, algo más de una centésima de grado por decenio, que es como suelen expresarse los climatólogos. En cuanto al R al cuadrado, se trata de una magnitud que se usa en Estadística para evaluar lo bien o mal que se ajusta una recta a una serie de datos experimentales. Cuanto más cerca está del valor uno, mayor es el grado de ajuste entre recta y datos. Cuanto más se acerca a cero, tal ajuste es un desastre (como es el caso en este ejemplo, con un R al cuadrado prácticamente cero).

Pero si, como Galileo, decís aquello de "Sí, pero la temperatura está subiendo", os matizaré que si, por ejemplo, hacéis idéntico juego con los meses estivales de esa serie histórica, os podéis encontrar el caso de setiembre, donde la línea de ajuste es y = -0,0007 x + 21,99, lo que es igual que decir que la temperatura media del agua del Aquarium en setiembre, desde 1947, está bajando (hay un signo menos delante de 0,0007) siete diezmilésimas de grado por año o siete milésimas por decenio. Pero estudiando el resto de meses estivales e independientemente de que las temperaturas parezcan subir o bajar mínimamente, en todos los casos las R al cuadrado son prácticamente cero.

Antes de publicar esta entrada pedí a un amigo, Catedrático de Estadística Aplicada, que la revisara por si las moscas. Me contestó, con la fina ironía que le caracteriza que, puestos a ver alguna tendencia, él veía con esfuerzo una cierta tendencia oscilante. Y, ciertamente, si le decimos a Excel que nos construya con esos datos una gráfica usando las llamadas medias móviles, promediando las temperaturas cada seis años, el programa nos dibuja una gráfica que proporciona un cierto comportamiento oscilante en los datos de mayo desde 1947. Pero ni mi amigo ni yo le damos mucho significado a esa tendencia. Son cosas de Excel.

Y, ahora, que cada cual saque sus conclusiones sobre el artículo del Diario Vasco.

Leer mas...

lunes, 29 de junio de 2020

Anchoas, sardinas y microplásticos

Cuando la anchoa que pesca la flota artesanal de bajura de los puertos vascos está en temporada (ahora acaba de terminarse), soy un consumidor bastante compulsivo de esos peces. Me da igual que las anchoas estén simplemente fritas en aceite muy caliente, rebozadas o, si sobran de unas y otras, desmenuzadas para hacer con ellas un revuelto. Cuando la temporada está cerrada y tengo mono de anchoas suelo comprar anchoa del Mediterráneo, aunque eso pasa pocas veces a lo largo del año porque, al menos para mí, hay diferencias notables entre las anchoas de ambas procedencias. Lo cual no ha sido óbice para que este finde me saltaran las alarmas cuando varios medios de comunicación se hicieron eco de un artículo publicado en la web de la revista Marine Pollution Bulletin. Un artículo que, por lo que veo, fue inmediata y eficazmente trasmitido por los investigadores implicados a los medios que, en grandes trazos, lo resumieron en titulares diciendo que, aproximadamente, el 60% de las sardinas y anchoas de Mediterráneo Occidental llevan microplásticos en sus intestinos.

Dice en El País una de las investigadoras implicadas en el trabajo que todo empezó cuando el grupo investigador (del que forman parte españoles, brasileños y franceses) buscaba potenciales causas del descenso poblacional de sardinas y anchoas, las dos especies más comercializadas en el Noroeste del Mediterráneo, representando el 39% de las capturas. Y entre las posibles causas llegaron a la conclusión de que los microplásticos podrían jugar un cierto papel, algo que se trata de documentar en el artículo. Para ello, los investigadores capturaron anchoas y sardinas en diversas zonas del Mediterráneo próximas a la frontera entre España y Francia. Y básicamente, y en lo que a mis comentarios se refiere, contabilizaron los microplásticos presentes en los intestinos de los peces tras extraerlos del cuerpo de los mismos. Para llevar a cabo esas determinaciones numéricas han utilizado un estereomicroscopio que les ha permitido la identificación de los posibles microplásticos. La Tabla 1, en la cuarta página cuarta del pdf que me he bajado del sitio de la revista, es el resumen total de los datos que sirven para la discusión del trabajo (el artículo es de pago, pero el que lo quiera tener puede pedírmelo).

Centrándome en el caso de las anchoas (el de las sardinas difiere poco), la primera columna de esa Tabla recoge las tres áreas geográficas en la que se han recolectado especímenes de Engraulis encrasicolus (el nombre científico de la anchoa). La segunda columna divide los ejemplares de cada zona en juveniles y adultos. La tercera muestra el número de peces considerados en cada caso. En lo relativo a las anchoas se han estudiado un total de 103 anchoas, de las cuales 70 son ejemplares juveniles y el resto adultas. La cuarta columna da las longitudes de los ejemplares, mientras la quinta es un parámetro estadístico que no me voy a entretener en describir.

La sexta columna es la que proporciona el dato que la mayoría de los titulares de los medios que yo he consultado han resaltado. En el caso de las anchoas, el porcentaje de ellas que contiene microplásticos en los intestinos oscila entre un 31% y un 73 % dependiendo de la zona de captura y de la condición de adultas o juveniles. Resumiendo, 60 de las 103 anchoas investigadas (un 62%) contenía algún genérico microplástico en sus intestinos. Las siguientes tres columnas evidencian que lo que se ha encontrado fundamentalmente en esos intestinos pueden clasificarse como fibras, la casi totalidad de las cuales han sido conceptuadas por los investigadores como microfibras, con tamaños inferiores a 5 milímetros, mientras que fibras más largas que ese valor (mesofibras) o microplásticos de otras morfologías son prácticamente inexistentes. Eso corrobora, una vez más, lo que en los últimos tiempos están evidenciando muchos estudios llevados a cabo en ríos y océanos de países occidentales con estrategias adecuadas de recogida de basura plástica, en los que son las fibras y no los trozos de recipientes plásticos los principales componentes de la basura marina. Fibras que provienen, en primer lugar, de los tejidos que vestimos (ya sean fibras naturales, semisintéticas o sintéticas), que se encuentran en suspensión en el aire y son transportadas por las corrientes de aire hasta sitios inhóspitos (sobre las fibras prometo una entrada en breve). También son fibras las provenientes de las artes de pesca (redes, sedales) que las flotas abandonan en el mar.

La séptima columna da el número medio de microfibras encontradas en cada anchoa investigada y es la que a mí me ha llamado la atención. Ese parámetro solo ha merecido una corta referencia en el artículo original y, que yo sepa, no ha sido mencionado en los artículos difundidos en los medios. Ahí se puede constatar que ese número no va más allá de una o dos microfibras por intestino (los valores oscilan entre 1.55 y 2.00, dependiendo de las zonas de captura y la edad de las anchoas). La captura es un episodio aleatorio en la vida de una anchoa concreta, lo que vendría a decir que esas anchoas, en ese momento, tenían una o dos fibras en su intestino y, probablemente, las tendrían varias horas o días después. Mi conclusión es que esas dos fibras estaban ahí como consecuencia de procesos digestivos cortos en los que las anchoas están digiriendo cosas y defecando los restos. Y en promedio, en cada instante, solo tienen dos fibras en su intestino. En caso contrario, si las fibras se acumularan en la anchoa, tendría que haber muchas más. Eso también está de acuerdo con la mayoría de la bibliografía existente sobre el efecto de los microplásticos en peces y aves marinas. En la mayoría de los casos, los microplásticos se comen y se devuelven al mar en forma de heces. Algo parecido a lo que hacemos nosotros con muchas de las fibras y otras partículas que ingerimos o inhalamos cada día como consecuencia de la contaminación atmosférica o la comida que comemos y bebemos. Y eso mismo pasará cuando el bonito o el atún se coma la anchoa (su presa favorita).

En el artículo de El País arriba mencionado, la investigadora implicada habla de que una próxima etapa en sus investigaciones es estudiar el impacto que esos microplásticos detectados en estos peces puedan tener en las personas que se alimentan de ellos. Yo tengo claro (aunque puedo equivocarme) que un impacto mínimo, por no decir inexistente. Cuando yo compro anchoas, mi pescatero, un auténtico cirujano eviscerando los cuerpos de cualquiera de los pescados que le compro, se preocupa de que no me coma las tripas de las anchoas. Así que difícilmente me voy a comer la una o dos fibras que, en promedio, pudieran almacenar los pescados investigados. Las posibles fuentes de preocupación podrían ser dos. Una proveniente de la duda (razonable) de que si las fibras fueran suficientemente pequeñas (nanofibras) pudieran pasar las paredes celulares e incorporarse a la musculatura del pez. La otra fuente de preocupación estaría motivada por el hecho de que esas fibras se constituyeran en "almacenes" de sustancias tóxicas existentes en el mar y que pudieran transferirse a la grasa o la musculatura del pez, entrando así en una cadena que pudiera alcanzarnos. Pero ninguna respuesta a esas preocupaciones pueden desprenderse de los datos proporcionados por los autores, así que, en su caso, los comentarios al respecto recogidos en los medios, son simples especulaciones. Y, además, en este Blog ya se ha documentado que, en el caso de los nanoplásticos, estamos muy lejos de tener datos al respecto y que en lo relativo a los microplásticos como vectores de sustancias tóxicas, los últimos trabajos de grupos relevantes consideran que esa es una conclusión poco fundamentada. Véase, por ejemplo, esta entrada o esta otra.

En definitiva, que no tengo nada contra artículos como el mencionado, que tiene su interés de cara a monitorizar el efecto de la contaminación por plásticos u otros contaminantes en las poblaciones de peces en el Mediterráneo. Pero lo que me molesta (y sobremanera) es que de los datos reales expuestos en el mismo y que tienen su mérito, solo se publiciten las conclusiones más fácilmente vendibles a los medios de comunicación, se escondan otras (como la aquí comentada) y se difundan opiniones que los datos del trabajo concreto no avalan.

Y ahora a convencer a los amigos que, cuando se pueda, sigan comiendo anchoas.

Leer mas...

jueves, 11 de junio de 2020

Aromas confinados (entrada invitada*)

Entre los múltiples estudios y encuestas sobre el comportamiento de los ciudadanos durante el reciente confinamiento, no ha podido faltar un estudio que determina un posible aumento del consumo de alcohol en Europa, durante este tiempo tan inusual. Sin entrar en muchos detalles, algo menos de la mitad de la población ha mantenido sus costumbres, lo que deja abierta la esperanza de que, en este país, todavía reina la serenidad pase lo que pase. Entre la otra parte de los entrevistados parece haber habido un aumento en el consumo de vino durante el confinamiento mientras que, curiosamente, el consumo de los destilados y de la cerveza ha bajado. Si la razón que se esconde detrás de este aumento en el consumo de vino se debiera a una necesidad de ahogar penas, resulta muy llamativo que la ciudadanía no haya recurrido a bebidas más económicas, como puede ser la cerveza, o más potentes, como los destilados. Por ello, el hecho de que haya aumentado solo el consumo de vino y además en la totalidad de los cuatro países en los que se ha hecho la encuesta (Portugal, España, Francia e Italia), me confirma, como alemán del Norte, que he aterrizado en una zona civilizada del planeta.

Desde siempre, el vino (bueno) se ha asociado más que cualquier otra bebida alcohólica, con una cierta delicadeza que reside en sus aromas. Pero no hay que olvidar que mientras que un vino tinto contiene un 86% en volumen de agua, un 13% de alcohol etílico o etanol y un 1% (v/v) de otros compuestos (glicerol, polisacáridos, etc.), su contenido en aromas es casi despreciable en términos de concentración, pues la suma de todos los aromas no alcanza, en general, más de un 0,1% en volumen o, lo que es igual, unas 1000 ppm. Si esto ya parece poco, aún es mas sorprendente todavía que algunos aromas muy notables de esos mismos vinos no alcancen ni las 10 ppm (una concentración diez mil veces menor que la del etanol).

En alguna de las muchas versiones de la famosa y muy lograda “rueda de los aromas” que se ve arriba (y que podéis ampliar clicando en ella) encontramos, por ejemplo, que lo que en el vino blanco se llaman aromas de “frutos tropicales”, como el plátano o la piña corresponden, respectivamente, a moléculas como el acetato de isoamilo y el hexanoato de etilo. En algunos vinos estas sustancias no llegan a estar presentes en concentraciones mayores a 1-5 ppm. Estas moléculas se han hecho famosas en los yogures y dulces aromatizados porque recuerdan claramente a las frutas de las que provienen. No obstante, realmente son solo los componentes principales de los aromas de estas frutas, los llamados aromas “clave”, mientras hay otros compuestos que contribuyen también a lo que se llama el “perfil de aroma” de una fruta concreta. En el plátano, por ejemplo, además del acetato de isoamilo, existen entre 5-10 compuestos adicionales que completan el aroma. La industria de la alimentación se suele limitar a añadir generalmente el aroma clave a ciertos productos y a compensar la falta del resto con unas etiquetas apetitosas y coloridas. Como me decía hace muchos años un reconocido investigador de aromas (el Prof. Ralf Berger, autor del libro Aroma Biotechnology): “nuestros hijos ya no sabrán cuál es el aroma verdadero de una fruta porque se habrán acostumbrado al aroma, bastante más rudimentario, de los yogures de fruta que consumen”.

Mientras en la fruta los aromas claves no superan la decena, en el caso del vino es completamente diferente. Se estima que hay hasta cientos de compuestos que completan su perfil aromático, lo que explica esa cierta sutilidad y complejidad en su aroma. Pero, además, esto tiene unas consecuencias muy interesantes.

Para empezar, no han faltado intentos de producir vinos sin alcohol, supuestamente por razones de salud, pero seguramente también con la vista puesta en un mercado significativo de países donde el consumo de alcohol no está permitido. La osadía de extraer el etanol del vino parece tarea fácil, ya que un 13% en volumen es una cantidad considerable y no es precisamente como buscar una aguja en un pajar. Pero el etanol no solo está en el vino como producto de la bioconversión del azúcar en la que, además, surge el dióxido de carbono (CO2). El etanol tiene también la importante función de mantener los aromas en el vino. Esto se debe al hecho de que la mayoría de los aromas son casi insolubles en agua, lo que se conoce como “hidrofobicidad”. Como decía uno de mis profesores, un gentleman y una eminencia en tecnología de membranas, esto es así porque si fuesen solubles en agua (hidrófilos), los aromas de las plantas se perderían instantáneamente con una lluvia o durante el regadío. Como esto no sucede, la reineta vasca mantiene su aroma a pesar de sus frecuentes encuentros con el agua inherente a nuestro "envidiable" clima. Es por ello que los aromas requieren de un entorno adecuado para mantenerse en su sitio dada su hidrofobicidad.

Y, volviendo al vino, precisamente este es el papel del etanol. El etanol tiene una particularidad: se disuelve bien en el agua (hasta mejor que en si mismo) pero tiene también una parte hidrófoba debido a los carbonos de su estructura química. De este modo, el etanol sirve de mediador entre el agua hidrófila y los aromas hidrófobos para los cuales actúa como “co-disolvente”, con la consecuencia de que, si intentamos separar el etanol del vino, una buena parte de los aromas, y además de los más relevantes, se irán con él. Es por eso por lo que se encuentran muy pocos vinos sin o con bajo porcentaje de alcohol, y si alguien un día termina bebiendo uno, probablemente desearía no haberlo encontrado. En este contexto, surge naturalmente la siguiente duda: ¿cómo entonces es posible que haya tanta cerveza sin alcohol? La razón se debe a que el perfil aromático de una cerveza es bastante mas simple que el de un vino y, además, el dióxido de carbono enmascara, por la sensación de frescor que ofrece, la falta de cuerpo aromático. Por ello, la cerveza permite una manipulación bastante más fácil.

Otro aspecto muy interesante del vino es el precio de algunas cosechas con un perfil organoléptico particularmente apreciado, muchas veces asociadas a una garantía de su zona de origen, como es, por ejemplo, el caso del Barolo italiano. Siendo también el vino un negocio, es de esperar que haya intentos de fraude, vendiendo vinos de fuera de estas zonas como si pertenecieran a ellas. El problema de comprobar la autenticidad de los vinos reside en el hecho de que su análisis químico es laborioso, debido a la multitud de compuestos que contiene. Utilizar paneles organolépticos, constituidos por humanos, para estas tareas rutinarias tampoco es eficiente ya que nuestra nariz tiende a saturarse rápidamente. Por ello, hace ya mas de 30 años, varios investigadores empleaban lo que parecía el Santo Grial de la olfactometría, la llamada “nariz electrónica”. Una publicación pionera [K Persaud and G Dodd, Nature 299, 352-355 (1982). doi: 10.1038/299352a0] provocó que muchos investigadores buscaran imitar la función de una nariz humana, utilizando sensores basados en conceptos relativamente básicos. Sobre narices electrónicas ya se habló en este Blog en fechas tan lejanas como 2006.

El concepto principal era utilizar materiales muy distintos, desde polímeros hasta óxidos metálicos, para desarrollar una serie de sensores que se exponían al aroma de los vinos (en este caso a la parte volátil). La idea era que cada uno de estos materiales interaccionara de una manera distinta con los aromas y, al mismo tiempo, cada aroma interaccionara de una manera distinta con cada sensor, dando lugar a un “perfil” de respuesta del conjunto de sensores que, supuestamente, era específico para cada compuesto y/o aroma. Con tanta ciencia poco definida, uno ya se imagina que la manera de extraer alguna información útil de este tipo de medidas era la estadística, y en concreto, el llamado análisis de los componentes principales. En términos muy sencillos, este método busca encontrar los dos parámetros (los componentes principales) que mejor describen un conjunto de datos. Representando estos dos componentes en un gráfico x-y, los datos similares se agrupan mientras los datos distintos se mantienen distanciados, como se ilustra en la figura. Las narices electrónicas parecían hacer maravillas, lograban diferenciar los aromas entre vinos de cosechas diferentes (como en la figura) o diferenciar entre las regiones de origen de los vinos. Parecía que se había conseguido emular una obra maestra, nuestra nariz, con unos sensores químico-físicos y un procesamiento de datos estadístico relativamente estándar.

Pero como tantas veces ocurre, cuando la ciencia se entusiasma demasiado con algo se olvida de los detalles. Se habrán fijado que el contenido de etanol indicado en las etiquetas de las botellas no es una ciencia exacta. Donde dice “13%” pueden ser tanto 13,0 % como también 12,8% o 13,2%. Para un vino, este 0,2% de etanol arriba o abajo no supone mucha diferencia y cambia fácilmente entre cosechas. Así que si recuerdan que mencioné al principio que la concentración de aromas está precisamente en este intervalo, en el 0,1 % en volumen o incluso por debajo, entonces pueden fácilmente imaginar cuál ha sido el verdadero origen de la discriminación entre vinos de cosechas y zonas diferentes en muchos trabajos publicados en aquella época. Acompañar las medidas por unos análisis convencionales de toda la vida, empezando por el contenido de etanol, hubiera evitado probablemente una ola de publicaciones que, al final, no servían para mucho más que para engordar el currículum vitae de algunos… pero igual precisamente por eso no se había hecho el esfuerzo.

Mientras estaba escribiendo esta entrada, me llamó la atención un reciente trabajo [J. Han y otros, Chem, 2(6), 817–824 (2017). doi:10.1016/j.chempr.2017.04.008] que habla de la clasificación entre distintas variedades de whisky escocés, utilizando algo similar a la “nariz electrónica”. Un trabajo científico ciertamente fantástico, con muchos datos, y en el que se logra diferenciar entre diferentes tipos de whiskys, supuestamente basándose en su composición. Sin embargo, cabe resaltar que en la primera tabla, en la que se encuentra el listado de los whiskys estudiados, se hace también mención del contenido de etanol de las muestras analizadas, resultando que el contenido de las mismas varía entre un 40 y un 48% en volumen. El trabajo se vende reivindicando un impacto inmediato y significativo en la sociedad. Algo que ya hemos escuchado desde hace 30 años en la comunidad científica tras la publicación del trabajo de Persaud y Dodd antes mencionado. Al fin y al cabo, como muy sabiamente me advertía otra eminencia científica y buen amigo, en Ciencia, la rueda se reinventa de 20 en 20 años.

(*) El autor de esta entrada es mi colega y amigo Thomas Schäfer, con un historial científico relevante y variado. En mi actual situación de jubilata, sin embargo, la parte de historial que más me interesa de mi "amigo alemán" es todo lo que aprendió sobre el vino durante su estancia en Portugal.

Leer mas...

viernes, 29 de mayo de 2020

El denostado cloro

En 1906, en la reunión anual de la American Water Woks Association (AWWA), una asociación sin ánimo de lucro, creada en 1881 "para mejorar la calidad y la distribución de agua", uno de sus miembros más destacados, el ingeniero y botánico George Whipple, se manifestó en torno a la polémica desatada en Estados Unidos por los primeros intentos de emplear compuestos químicos para eliminar del agua de grifos y fuentes una serie de microorganismos. Que entonces ya se sabía que eran los responsables de las epidemias de diverso tipo (cólera, fiebres tifoideas, gastroenteritis y un largo etcétera) que, repetidamente, asolaban las cada vez más pobladas ciudades americanas. Decía allí Whipple que "es difícil contemplar un futuro escenario en el que productos químicos venenosos se añadan al agua potable para eliminar bacterias". Pero en muy poco tiempo, la terquedad de los datos que se fueron acumulando en ciudades que, como Jersey City o Filadelfia, fueron implantando la cloración del agua, acompañada de la filtración de la misma a través de lechos de arena (algo que se sigue haciendo hoy en la mayor parte de los sitios), hicieron cambiar de criterio a nuestro ingeniero, que pasó a colaborar activamente en los planes de cloración de otras ciudades americanas.

Para la cloración del agua y la eliminación de patógenos se emplean cantidades relativamente pequeñas de unas sales llamadas hipocloritos, la más habitual de las cuales es el hipoclorito sódico. La disolución de esa sal en agua es la popular lejía, uno de cuyos anuncios vintage adorna el inicio de esta entrada. La misma humilde lejía que también está jugando un papel fundamental en el control de la pandemia que nos ha hecho la pascua en este inicio del infausto 2020. Está suficientemente probado en la literatura científica, y en la práctica sanitaria, que el uso en la limpieza de superficies de disoluciones tan diluidas como la preparada con 20 mL de lejía convencional, diluidos hasta un litro con agua, hace que el Coronavirus sucumba en menos de 5 minutos.

A pesar de este potencial defensivo que nos proporcionan estos compuestos que contienen cloro en su molécula, el elemento químico de ese nombre no ha estado nunca muy bien visto. Es muy probable que todo arranque con el libro de Rachel Carson, publicado en 1962 bajo el título Silent Spring (Primavera Silenciosa), un alegato contra los insecticidas en general y contra el DDT en particular que, a falta de un cloro, tiene hasta cinco en su molécula. También hay cloro (y abundante) en moléculas como las dioxinas (que recuerdo que el hombre nunca ha fabricado intencionadamente), en los bifenilos clorados (PCBs), en los CFCs y, sin alejarnos mucho de la cloración del agua, en los famosos Trihalometanos (THMs), compuestos que se forman merced a la reacción del cloro empleado en la cloración con restos de materia orgánica (ácidos húmicos y fúlvicos) proveniente de hojas y troncos de plantas que pueda haber en el agua de los manantiales que nutren nuestros grifos. De los THMs, descubiertos en los setenta, y de su carácter cancerígeno, ya os hablé con detalle en una entrada de 2014.

Así que, con todos estos antecedentes, podría entenderse que, en 1991, Greenpeace abogara por la prohibición total "del uso, la exportación e importación de compuestos orgánicos clorados (DDT, PCBs,...), cloro elemental (es decir el gas cloro) o agentes oxidantes clorados (como el dióxido de cloro o los hipocloritos)". Nota: los paréntesis son míos. Concluyendo que "no existen usos del cloro que podamos considerar como seguros". Esa petición de prohibición y los comentarios que acabo de mencionar aparecen en numerosos artículos y libros, siempre con la misma referencia [J. Thornton, The Product is the Poison: The Case for a Chlorine Phase-Out (Washington, D.C.: Greenpeace, 1991)] pero, por más que lo he intentado, ese documento, que suena como un documento interno de Greenpeace, no aparece por ningún lado.

La hipótesis más probable que manejo es que Greenpeace haya retirado de la circulación ese documento, aunque si lo encontráis y me lo pasáis me retractaré de lo dicho. Porque la radicalidad de esa petición fue desmesurada y la organización ha tenido que desdecirse en muchos de los frentes que, de una u otra forma, están implicados en ella. No hay que olvidar que cloro hay en la sal común o en el ácido clorhídrico de nuestro estómago. Cloro hay en muchos medicamentos, como en la cloroquina o la hidroxicloroquina que, aunque no parecen tan eficaces contra la Covid-19 como Trump pretende, lo han sido en el tratamiento de la malaria o de enfermedades autoinmunitarias como el lupus eritomatoso o la artritis reumatoide. Y cloro hay en el PVC, otro de los objetivos de Greenpeace en el pasado, pero esa es una historia que quedara para otro día.

Prefiero, para terminar, centrarme en el asunto con el que se ha iniciado esta entrada. Desde principios del siglo XX, millones y millones de humanos se han beneficiado y se siguen beneficiando de poder abrir un grifo y beberse, con total seguridad, el agua que sale de él, gracias a la acción biocida de las disoluciones de hipoclorito. Y cuando, por alguna razón, se ha descuidado esa cloración, las consecuencias han sido graves. Un ejemplo esclarecedor es la epidemia de cólera que asoló Perú en febrero de 1991, el mismo año del documento de Greenpeace arriba mencionado. Fue la primera epidemia de cólera conocida en ese país desde principios del siglo pasado, con mas de trescientos mil casos registrados y casi 3000 muertes.

Las causas del inicio de la epidemia no están claras. Hubo sectores que se la imputaron a Greenpeace y a su activa política contra el cloro en aquellos momentos. Hay otros que culparon a la Agencia Medioambiental Americana (EPA), que había prevenido a algunos países en vías de desarrollo de la relación entre concentración de cloro empleada en la cloración y generación de trihalometanos, lo que habría hecho que los funcionarios peruanos aflojaran la mano, empleando dosis tan bajas de hipoclorito que no resultaron eficaces para acabar con la bacteria causante del cólera. Fuera lo que fuera, no parece que hoy en día Greenpeace esté contra la cloración de agua, como puede comprobarse en este documento, en el que años más tarde, explicaban su versión del brote peruano.

Y algo parecido, aunque mucho menos grave, ocurrió en 2018 cerca de aquí, en Usúrbil, cuando uno de los depósitos que almacenaba agua proveniente de manantiales "de toda la vida" pero no controlados (y por tanto no clorados) por la Mancomunidad del Añarbe, se contaminaron con un virus. Como ese agua se mezclaba con la proveniente de la citada Comunidad, el virus acabó finalmente en el agua de los hogares del lugar, enviando a gran parte de sus habitantes a visitar con frecuencia el WC.

Leer mas...

lunes, 11 de mayo de 2020

Polímeros transparentes para una pandemia

Es muy probable que a muchos el nombre Plexiglas no les suene de nada. Es una marca registrada y espero que la empresa que tiene la propiedad del nombre no se meta conmigo, porque lo cierto es que les voy a hacer propaganda gratis. En lo que a mi respecta, esa palabra forma parte de mi memoria histórica. La aprendí cuando era un niño un tanto salvaje, jugando en un barrio que, en los cincuenta y principios de los sesenta, estaba en las afueras de Hernani, aunque hoy es casi el centro del pueblo donde viví hasta los diecisiete años. Y la aprendí cuando aún no sabía que iba a estudiar Química ni que, años más tarde, me iba a encontrar con el material que responde a ese nombre comercial siendo ya un incipiente investigador en polímeros.

En una entrada que escribí en un Blog mantenido por mis amigos de la Asociación de Divulgación Científica de la Región de Murcia (ADCMurcia), os contaba que mis primeros recuerdos del Plexiglas contienen imágenes de ese barrio, con tendederos de ropa en ventanas y balcones que, los días de pronóstico incierto, se protegían con unos trozos de plástico bastante cutres que, a pesar de su presencia poco gratificante y su dificultad para ser doblados, la gente conservaba como oro en paño. No sólo para esos menesteres sino para otros igualmente importantes en la época de penurias de la que hablamos como, por ejemplo, para conseguir que cunas y camas no se mojaran con incontinencias infantiles o seniles. Pues ese mismo material, aunque en un formato diferente, es el que está irrumpiendo en estos últimos días en muchos comercios, en forma de una barrera de protección transparente y segura (como la de la foto) frente a la pandemia que nos acosa. Y quién sabe si no nos aislarán pronto en cajitas de ese material cuando estemos en terrazas y playas. Hasta la propietaria de la tienda de chuches, debajo de mi casa y que sabéis que no es santa de mi devoción, ha instalado una de esas mamparas. Voy a tener que cambiar mi opinión sobre ella.

Aunque hay varios nombres comerciales para denominar a ese material, Plexiglas es el que tradicionalmente se asocia con el polímero que los químicos llamamos poli (metacrilato de metilo), PMMA en su acrónimo en inglés, perteneciente a la familia de los plásticos acrílicos, cuyos numerosos miembros sirven para multitud de cosas. El propio PMMA, por si solo, tiene también una gran variedad de aplicaciones. Por ejemplo, en la entrada mencionada de la ADCMurcia, dediqué buena parte de ella al papel que jugó este plástico en el desarrollo de las lentillas oculares. Pero hoy nos vamos a centrar en el Plexiglas y en las personas que lo desarrollaron.

Otto Röhm nació en 1876 en la localidad alemana de Öhringen. Con quince años empezó a trabajar como auxiliar de Farmacia para, posteriormente, seguir estudios sobre esta materia y obtener el título de farmacéutico en 1899. Pero, tras conseguirlo, decidió estudiar Química en la Universidad de Tubinga. O era un tío muy listo o el tránsito de farmacéutico a químico era entonces muy fácil, porque para 1901 ya tenía hasta el Doctorado, con una tesis sobre los productos de polimerización del ácido acrílico, un asunto este, el de la polimerización, que si habéis leído mi reciente entrada sobre "la Química mugrienta" no parecía tener un futuro muy halagüeño en ese momento. Precisamente por ello, cuando decidió ponerse a trabajar, empezó en el negocio de los curtidos, desarrollando una gama de productos que resultaron revolucionarios en los procesos de curtición. El hombre hizo un buen dinerito y creó su propia empresa con su colega y tocayo Otto Haas, la hoy famosa Röhm und Haas (lo siento pero Blogger no me deja escribir el símbolo habitual entre los dos nombres). Durante un tiempo se siguieron dedicando a los curtidos y a los textiles pero, en 1912, la cosa ya estaba bastante madura en el asunto de los plásticos como para que decidieran dar un vuelco a su empresa y centrarse en ese emergente mundo.

Donde, tras muchos problemas e incertidumbres, la gloria llegó de forma un tanto inesperada. Röhm und Haas había iniciado su andadura polimérica sintetizando varios poliacrilatos, unos parientes de los polimetacrilatos. Pero un día (¡Ay la chiripa!) una botella de un líquido oleoso que llevaba una temporada cerca de una ventana donde daba el sol, se partió en pedazos, dejando al descubierto un bloque de un sólido transparente que, enseguida, todo el mundo atribuyó a que el líquido que estaba en la botella (metacrilato de metilo) había polimerizado para dar lugar al sólido poli (metacrilato de metilo) (PMMA) que acabó rompiéndola. En sucesivos trabajos posteriores se pudo buscar una vía reproducible y económica para llevar a cabo la polimerización y se fueron, poco a poco, conociendo las excelentes propiedades del material. El producto se patentó en 1933 y el nombre Plexiglas se formó a partir de Plexigum, con el que se denominaba la gama de resinas acrílicas que hasta entonces vendía la empresa, y el final glas, vidrio, porque dadas sus propiedades, estaba claro para ellos que lo que habían descubierto era un vidrio artificial u orgánico, esto último por tratarse de un producto derivado de la Química del carbono, la Química Orgánica, y no, como en el caso del vidrio, de la Química del silicio, la Química Inorgánica.

El poli (metacrilato de metilo) es el más transparente de todos los plásticos convencionales, es varias veces más resistente al impacto que el propio vidrio a igualdad de grosor, siendo como es mucho más ligero que él. No se decolora apreciablemente por la acción de los rayos UV durante varios años y es un buen aislante térmico y acústico. Aunque se raya con facilidad por objetos punzantes es fácil de reparar y, finalmente y en lo que tiene que ver con las mamparas de protección y otros usos, se puede moldear en planchas bidimensionales o en formas mucho más complicadas aplicando calor.... En fin, un chollo de material y encima a buen precio, hasta ahora... Porque el problema, a día de hoy, es que el COVID-19 ha generado semejante demanda de esas mamparas que ha alterado por completo el mercado global de su materia prima y anda todo el mundo peleándose, y pagando bastante más, por tener acceso a este material.

Y ya que hablamos de polímeros transparentes y COVID-19, os diré que otro material, con un nombre que resuena al de Plexiglas, EuroPlex PPSU, es una poli (fenilensulfona) que la misma Röhm und Haas está vendiendo para los frontales de esas viseras protectoras que usan los sanitarios, pero que también se ven en comercios y en la calle. Así que, puestos a reconocer protagonistas de la pandemia, los plásticos tendrían que tener su huequecito. Pero ya sé que diréis que es una opinión sesgada de vuestro Búho.

Leer mas...

miércoles, 22 de abril de 2020

Flatología

Uno de los comentaristas habituales de este Blog es un amigo que responde al seudónimo de Flatólogo. Nos conocimos virtualmente haciendo comentarios en el delicioso Blog lamargaritaseagita que mantiene Jorge Ruiz-Carrascal sobre gastronomía y alimentos. Aunque ahora lleva parado desde finales de 2016 y muchos lo echamos de menos y esperamos que se reactive. Tanto a Flatólogo (Manuel Romera) como a Jorge, a los que considero amigos (si ellos me dejan), los he conocido después personalmente, compartiendo mesa y mantel y aprendiendo de lo que saben. Es una de las ventajas de las Redes Sociales, que conoces gente estupenda (y sabia) que, de otra manera, no hubieras conocido nunca.

El caso es que en las ocasiones en las que he hablado o me he escrito con Flatólogo, nunca se me ha ocurrido preguntarle por qué ha elegido ese seudónimo. Flatólogo quiere decir experto en flatos (o pedos, o cuescos, que diría Cela) y resulta que Manuel ejerce la Medicina pero como oftalmólogo (lo de experto en cuestiones gastronómicas es su vicio). Igual nos aclara el asunto cuando este post se publique. Viene a cuento tal escatológica entradilla porque otro amigo, el ilustre palentino Néstor Núñez, me mandaba ya hace tiempo un interesante email en el que me preguntaba cosas sobre la composición química de las flatulencias, por qué arden y otras interesantes cuestiones ligadas a sus recuerdos juveniles y sus preocupaciones actuales. Quise contestarle enseguida pero luego me lié con un par de charlas que tenía que dar y que llevaba mal preparadas. Y mas tarde me empecé a agobiar con el asunto del COVID-19, semanas antes de que el Gobierno se dignara hacer lo mismo, y no tenía el cuerpo para estas cosas. Pero ya ando algo mejor de ánimo y vamos a contarle algo de lo que preguntaba, antes de que sea muy tarde.

La composición de una flatulencia es una compleja combinación de una serie de factores que varían mucho de una persona a otra y que tienen que ver con la comida que uno ingiere, la colección de bacterias que pueblan su colon además de un largo etcétera que podríamos denominar la bioquímica de cada uno. Pero, al final, los mayores componentes de un pedo son gases que no huelen, como el nitrógeno y el oxígeno del aire, que ingerimos continuamente, u otros como el hidrógeno, el metano o el dióxido de carbono (CO2) que provienen bien de la digestión o de la actividad de las bacterias en el intestino.

Los gases que huelen (y algunos francamente mal, como es obvio) son otros, generalmente sustancias en cuya molécula hay algún átomo de azufre (metanotiol, dimetil sulfuro o ácido sulfhídrico) o nitrógeno (indol, escatol). Pueden estar en cantidades pequeñas, a veces hasta ridículas pero, como ya hablamos aquí en el caso de los perfumes o los vinos, nuestra nariz en un sensor particularmente eficaz para detectar algunas moléculas y estas están entre ellas. La mayor o menor presencia de estos gases pestilentes depende de nuestra dieta (de ahí la foto que ilustra la entrada, el brócoli contiene mucho azufre) o de nuestra salud (de hecho, hay estudios tratando de correlacionar niveles de algunos de los gases presentes en flatulencias y heces, con ciertas enfermedades del tracto intestinal).

Internet está lleno de vídeos en los que la gente prende fuego a sus pedos. Y ello se debe, sobre todo, a la presencia en los mismos del hidrógeno y del metano (altamente inflamables). Además, la cantidad de hidrógeno que se produce en nuestras digestiones en un día puede llegar a ser de varios litros, merced a la acción de ciertas bacterias sobre los carbohidratos que ingerimos. Afortunadamente para los que acercan cerillas y mecheros a su culo mientras se pean (del verbo peer, ver RAE), otras bacterias hacen reaccionar el hidrógeno con los sulfatos para producir ácido sulfhídrico (el del clásico olor a huevos podridos), mientras que unos microorganismos (las arqueas) ayudan a convertir ese hidrogeno en metano y agua al reaccionar con el anhídrido carbónico. Porque si así no fuera, y evacuáramos todo el hidrógeno producido, el porcentaje de quemados por estas prácticas sería más alto del que actualmente es.

Otra de las dudas de mi amigo palentino está relacionada con sus experiencias juveniles, según las cuales las flatulencias quemadas no olían como el pedo original. La Química también tiene explicación para ese extremo. Cuando aplicamos la cerilla o el mechero a nuestro trasero, lo que fundamentalmente quemamos es hidrógeno y metano en las clásicas reacciones de combustión de ambos, reacciones que solo producen agua en el primer caso y CO2 y agua en el segundo. Ni los gases originales ni los que se producen en esas reacciones huelen, así que el cambio tiene que provenir de la combustión de algunos gases odoríferos que, al quemarse, desaparecen como tales.

En las combustiones mas relevantes (las del hidrógeno y el metano), otro matiz es el color de la llama generada en estas divertidas (y peligrosas) prácticas. En vídeos grabados en la oscuridad usualmente se ve una llamarada azul, debida a la combustión del metano. Pero no todo el mundo produce la misma cantidad de metano en sus cañerías y muchos ni siquiera lo producen en cantidades adecuadas para el efecto, debido a la ausencia de los microorganismos que he mencionado en el párrafo anterior. En ese caso, uno puede seguir quemando pedos gracias al hidrogeno pero, en ausencia de metano, la llama producida es más bien amarilla o anaranjada.

Finalmente, Néstor me preguntaba sobre los niveles de flatulencia en veganos y carnívoros convictos y las repercusiones que eso pueda tener sobre los gases de efecto invernadero y el cambio climático. Una cuestión harto complicada sobre la que este vuestro Búho sabe poco o nada. Una revisión bibliográfica rápida en estos días de cocinamiento (como dice una amiga), me ha revelado que el tipo de investigación más habitual en estas cuestiones se centra en evaluar el impacto ambiental, en términos de producción equivalente de CO2, de las emisiones de gases de efecto invernadero derivadas de la totalidad de los procesos (uso de terreno, energía empleada, agua, etc.) implicados en la producción de dietas más o menos representativas de las posibles opciones alimenticias de los consumidores. Y parece desprenderse que la dieta vegana es la más sostenible. Aunque a mí, y creo que a Néstor, nos coge un poco mayores para un cambio radical.

Actualización (23/04, 9:17). Flatólogo ha respondido enseguida a mi requerimiento. Está en el primer comentario, aquí debajo. Y la infografía que menciona en él está aquí.

Leer mas...