viernes, 27 de octubre de 2023

Sobre la Captura Directa de CO2 desde el Aire

El Informe Especial sobre Calentamiento Global de 1,5 ºC (2018), preparado por el IPCC, a instancia de la Conferencia de Naciones Unidas sobre Cambio Climático de 2015, estableció que, para lograr el objetivo de no sobrepasar ese límite de temperatura con respecto a la llamada época preindustrial, debemos conseguir, para el año 2050, el llamado NetZero en lo que a emisiones de gases de efecto invernadero (GEI) se refiere. Un empeño que el propio informe reconoce que es bastante complicado y que necesita de “reducciones de emisiones ambiciosas” y “cambios rápidos, profundos y sin precedentes en todos los aspectos de la sociedad”.
Además de intentar no emitir más GEIs (fundamentalmente CO2) a la atmósfera, el informe recomienda otras actuaciones como, por ejemplo, la captura directa en el propio lugar de la emisión del CO2 producido por grandes emisores del mismo, como es el caso de acerías, cementeras o industrias químicas. Como las cantidades a captar son grandes hay que pensar en qué hacer posteriormente con ese CO2, de lo que enseguida hablaremos.Pero no debemos olvidar un problema inherente al hecho de que llevemos muchos años vertiendo CO2. Dado su ciclo de vida en la atmósfera, seguirá habiendo en ella, durante mucho tiempo, una cantidad de CO2 superior a la deseable para llegar a alcanzar los objetivos que se propusieron en 2015 en Paris. Así que necesitamos, adicionalmente, eliminar cantidades importantes del CO2 que actualmente ya se encuentran en la atmósfera.

Para hacerlo hay soluciones o métodos que podemos llamar naturales como plantar más árboles, auténticos sumideros de ese gas. O, aun mejor, gestionar eficientemente todo lo que tiene que ver con el suelo, los bosques y los cultivos. Pero los cálculos parecen indicar que eso tampoco sería suficiente. Así que, de esa necesidad de hacer algo más, surge la tecnología denominada Captura Directa de Aire, también conocida por sus siglas en inglés, DAC.

Explicado de forma sencilla, la cosa consistente en capturar grandes cantidades de aire por medio de esa especie de ventiladores invertidos que veis en la foto que ilustra esta entrada, eliminar el CO2 presente en él (que como sabéis, solo supone el 0,04% del aire), devolver el aire sin dióxido de carbono a la atmósfera y utilizar el CO2 así obtenido en diversas aplicaciones (p.e. en la fabricación de combustibles sintéticos para aviación, fabricación de plásticos, etc.) o, al igual que el capturado en grandes emisores que mencionaba arriba, almacenarlo geológicamente.

Evidentemente, todo esto parece demasiado sencillo para que sea verdad. Se necesita buscar esos lugares geológicos donde almacenarlo (y donde lo más probable es que haya oposición ciudadana) y buscar nuevas aplicaciones de empleo de ese CO2 para no acumularlo sin fin . Y, si al final le damos un uso, se necesitarán extensas redes de gaseoductos para distribuir ese CO2 a los lugares que vayan a emplearlo, además de adecuados estudios sobre la viabilidad económica de todo ello.

Pero uno ha sido profesor de Termodinámica durante muchos años. Y, en el caso de la DAC, hay un aspecto ligado a la energía del proceso que me intrigaba. Incluso había pergeñado una serie de cálculos al respecto cuando, de repente, me encontré con un artículo que confirmaba mis hipótesis (o, al menos, el autor pensaba en similares términos a los míos). Estaba en el blog The Climate Brinck, alojado en Substack (la plataforma a la que me estoy aficionando un montón). Un blog que comparten dos climatólogos muy conocidos y próximos al IPCC (Andrew Dessler y Zeke Hausfather) aunque, en lo relativo al artículo del que estamos hablando, el autor es el primero.

La Termodinámica permite simular muchos procesos que ocurren en la Naturaleza de forma muy simplificada. Y con la peculiaridad de que, al hacerlo, se puede evaluar la forma más eficiente, en términos energéticos, del proceso simulado. Y así, en el caso de la tecnología DAC, ésta puede modelarse en dos procesos diferenciados. Uno implica la separación del CO2 desde el aire que lo contiene y el otro comprimirlo hasta una presión alrededor de 100 veces la presión atmosférica, que sería la adecuada para almacenarlo en algún depósito geológico. Los que conocen algo de Termodinámica saben que, para hacerlo, hay que definir los llamados estados iniciales y finales del proceso, la trayectoria reversible entre ambos, funciones de estado que, como la energía libre de Gibbs, cuantifican la energía implicada en el proceso y cosas similares. Pero eso se queda para los profesores que quieran usar la entrada a la que me estoy refiriendo para plantear un problema sencillo de Termo a sus estudiantes.

El resultado, en el caso de la separación, es que necesitaríamos 500 kilojoules (kJ) para separar 1 kilo de CO2 del aire. Si quisiéramos eliminar los cuarenta mil millones de toneladas de CO2 que actualmente se emiten cada año, necesitaríamos del orden de 2x10(19) J cada año, lo que corresponde a la energía suministrada durante ese año por el equivalente de 300 presas Hoover, una presa gigantesca situada en el curso del río Colorado. O la proporcionada anualmente por 350 centrales nucleares como la de Almaraz. Y si ahora calculamos la energía necesaria para comprimir todo ese gas a 100 atmósferas, necesitaríamos un 50% adicional de la energía anterior. En total, y si hacemos los cálculos necesitaríamos aproximadamente el 6% de toda la energía consumida anualmente por la humanidad. O, en términos de potencia eléctrica, alrededor de un Teravatio (TW).

Pero, y esto es lo más importante, ese es el valor más pequeño que puede esperarse en virtud de las simplificaciones termodinámicas que hemos realizado para obtenerlo. De ahí hacia arriba, todo dependerá de los procesos realmente implicados. Algunas de las compañías que están liderando la investigación en este campo estiman que ese gasto energético podría multiplicarse por diez. Y, evidentemente, solo podría hacerse a partir de energías renovables como la eólica, la fotovoltaica, la hidroeléctrica, la geotérmica, etc. Porque, si tuviéramos que usar combustibles fósiles para obtener la energía necesaria, sería la pescadilla que se muerde la cola.

Así que no es extraño que Dressler termine su entrada diciendo que aunque su intención “no es abogar a favor o en contra de la DAC, los beneficios que de ella se derivarían serían de tanto calado como los obstáculos técnicos, económicos o industriales a abordar”. Y, como buen seguidor de las conclusiones del IPCC, argumenta que “nuestra prioridad debe ser descarbonizar nuestra economía”.

Lo que, visto lo visto por el momento, no es tampoco una cuestión baladí.

Leer mas...

viernes, 6 de octubre de 2023

Obesógenos: Fat is in the air. Una entrada invitada(*)

Durante la Primera Guerra Mundial, las autoridades militares francesas estaban desconcertadas: numerosos trabajadores de sus fábricas de municiones comenzaron a sufrir un misterioso adelgazamiento, acompañado de hipertermia extrema de hasta 45ºC, que causó más de 35 muertos y cientos de afectados. Los supervivientes no paraban de adelgazar por mucho que comieran. Solo recuperaban peso cuando trabajaban lejos de las municiones. El asunto quedó archivado y no se estudió en profundidad. ¿Qué importaban unas decenas de muertos al año cuando en la primera batalla del Marne murieron 80.000 soldados franceses en una sola semana?

En 1933, el farmacólogo americano Maurice L. Tainter investigó el asunto y halló la causa. Los obuses franceses utilizaban ácido pícrico (2,4,6-trinitrofenol) como explosivo y en su preparación mediante nitración del fenol se producía un subproducto, el 2,4-dinitrofenol (DNP) que, administrado en pequeña cantidad a ratas de laboratorio, recapitulaba la anorexia e hipertermia de los trabajadores franceses. Hoy sabemos que el DNP es uno de los anoréxicos más potentes que existen y que una pequeña cantidad del mismo, ingerido o inhalado como polvo durante un breve período, inhibe la formación de ATP (Trifosfato de adenosina)en las mitocondrias, bloquea la síntesis de proteínas, estimula el consumo de oxígeno y provoca una hipertermia descontrolada. Lo importante es que el caso del DNP puso de manifiesto que la presencia ambiental de ciertas moléculas sintéticas puede alterar, significativamente, la masa corporal con independencia de la alimentación o el ejercicio.

Pasaron las décadas y la penosa delgadez de comienzos del siglo XX ha sido reemplazada por la denostada “pandemia de obesidad” actual. Por consiguiente, solo era cuestión de tiempo que surgiese la pregunta: ¿podrían algunos productos químicos presentes en nuestros entornos laborales, urbanos, alimentos, etc… provocar el efecto contrario al de DNP? Es decir, ¿podrían añadir una obesidad “extra” a la que nos corresponde por dieta y ejercicio? Esta idea es muy intuitiva y se ha concretado en la llamada hipótesis de los productos obesógenos,que ha sido recogida en artículos de revisión como éste publicado en la revista Journal of Pharmacology.

A pesar de que en las conclusiones del artículo los autores acaban admitiendo que la obesidad humana es un proceso multifactorial y que, en la práctica, es virtualmente imposible distinguir claramente el “efecto obesógeno” de otros factores como la sobrealimentación, el desequilibrio nutricional, la falta de ejercicio o los factores genéticos, no por ello dejan de preconizar la prohibición o drástica limitación de los obesógenos como medida preventiva para combatir la obesidad global.

El problema es que los obesógenos forman parte de muchos productos que usamos diariamente como detergentes, alimentos, envases de plástico, ropa, cosméticos, etc…, lo que dificulta sortear sus efectos. A día de hoy, y como se recoge en este artículo de divulgación (basado en gran parte en el anterior), en torno a 50 productos químicos han sido etiquetados por algunos endocrinólogos como obesógenos o potenciales obesógenos. Entre ellos están el famoso bisfenol A (BPA), de cuya vida y milagros ya se habló en este Blog (ver aquí y aquí), los bifenilos policlorados, los ftalatos, los éteres de polibromodifenilos, las sustancias perfluoroalquiladas y polifluoroalquiladas, los parabenos, la acrilamida, los alquilfenoles, el dibutilestaño o algunos metales pesados como el cadmio y el arsénico.

En el laboratorio se ha comprobado que, por ejemplo, el BPA es un disruptor endocrino que activa los adipocitos encargados de almacenar grasa y aumenta perceptiblemente el tejido adiposo blanco en animales, lo cual apoyaría la hipótesis obesógena. Sin embargo, para justificar los resultados experimentales, los autores necesitan invocar las denominadas dosis-respuestas no-monotónicas; es decir, que la acción de esos obesógenos no iría disminuyendo a concentraciones cada vez más bajas, como suele ser lo habitual, sino que, a partir de un determinado valor, esas sustancias podrían tener a bajas concentraciones un mayor efecto que a altas.

La naturaleza química de los compuestos obesógenos es otro de los puntos más llamativos de la hipótesis. Los 50 compuestos mencionados arriba también son posibles tóxicos a través de mecanismos de acción que nada tienen que ver con la obesidad. No se sabe si tras su absorción, y a las concentraciones fisiológicas en tejidos humanos, actúan realmente como obesógenos o no.

Además, resulta sorprendente que decenas de miles de moléculas de nuestro entorno natural, procedentes de animales, vegetales o minerales, nunca se hayan identificado como inequívocamente obesógenos, excluyendo los propios alimentos grasos o los azúcares. Tampoco se ha descubierto hasta ahora ningún compuesto sintético con una actividad claramente obesógena comparable a la que tiene el DNP arriba mencionado para la anorexia.

En fin, el tiempo dirá si la hipótesis obesógena va engordando o adelgazando, pero si os hacen un comentario impertinente acerca de esa barriguita que se adivina bajo el niqui, ahora tenéis algunos “químicos” a los que echar la culpa.

(*) El Prof. Jesús M. Aizpurua es un viejo amigo, al que llegué a dar clase en los primeros años de mi Facultad. Hoy es Catedrático de Química Orgánica en la misma. Un especialista en el diseño y la síntesis de nuevos compuestos mediante la llamada Click Chemistry, es un relevante científico de la UPV/EHU. Y un decidido emprendedor en la aplicación de su investigación, como lo demuestra el que sea el Director Científico de la empresa Miramoon Pharma S.L., entre cuyos productos se encuentra el novedoso candidato a fármaco PM-004, destinado al tratamiento no invasivo de la retinosis pigmentaria.

Leer mas...

Powered By Blogger