lunes, 29 de junio de 2020

Anchoas, sardinas y microplásticos

Cuando la anchoa que pesca la flota artesanal de bajura de los puertos vascos está en temporada (ahora acaba de terminarse), soy un consumidor bastante compulsivo de esos peces. Me da igual que las anchoas estén simplemente fritas en aceite muy caliente, rebozadas o, si sobran de unas y otras, desmenuzadas para hacer con ellas un revuelto. Cuando la temporada está cerrada y tengo mono de anchoas suelo comprar anchoa del Mediterráneo, aunque eso pasa pocas veces a lo largo del año porque, al menos para mí, hay diferencias notables entre las anchoas de ambas procedencias. Lo cual no ha sido óbice para que este finde me saltaran las alarmas cuando varios medios de comunicación se hicieron eco de un artículo publicado en la web de la revista Marine Pollution Bulletin. Un artículo que, por lo que veo, fue inmediata y eficazmente trasmitido por los investigadores implicados a los medios que, en grandes trazos, lo resumieron en titulares diciendo que, aproximadamente, el 60% de las sardinas y anchoas de Mediterráneo Occidental llevan microplásticos en sus intestinos.

Dice en El País una de las investigadoras implicadas en el trabajo que todo empezó cuando el grupo investigador (del que forman parte españoles, brasileños y franceses) buscaba potenciales causas del descenso poblacional de sardinas y anchoas, las dos especies más comercializadas en el Noroeste del Mediterráneo, representando el 39% de las capturas. Y entre las posibles causas llegaron a la conclusión de que los microplásticos podrían jugar un cierto papel, algo que se trata de documentar en el artículo. Para ello, los investigadores capturaron anchoas y sardinas en diversas zonas del Mediterráneo próximas a la frontera entre España y Francia. Y básicamente, y en lo que a mis comentarios se refiere, contabilizaron los microplásticos presentes en los intestinos de los peces tras extraerlos del cuerpo de los mismos. Para llevar a cabo esas determinaciones numéricas han utilizado un estereomicroscopio que les ha permitido la identificación de los posibles microplásticos. La Tabla 1, en la cuarta página cuarta del pdf que me he bajado del sitio de la revista, es el resumen total de los datos que sirven para la discusión del trabajo (el artículo es de pago, pero el que lo quiera tener puede pedírmelo).

Centrándome en el caso de las anchoas (el de las sardinas difiere poco), la primera columna de esa Tabla recoge las tres áreas geográficas en la que se han recolectado especímenes de Engraulis encrasicolus (el nombre científico de la anchoa). La segunda columna divide los ejemplares de cada zona en juveniles y adultos. La tercera muestra el número de peces considerados en cada caso. En lo relativo a las anchoas se han estudiado un total de 103 anchoas, de las cuales 70 son ejemplares juveniles y el resto adultas. La cuarta columna da las longitudes de los ejemplares, mientras la quinta es un parámetro estadístico que no me voy a entretener en describir.

La sexta columna es la que proporciona el dato que la mayoría de los titulares de los medios que yo he consultado han resaltado. En el caso de las anchoas, el porcentaje de ellas que contiene microplásticos en los intestinos oscila entre un 31% y un 73 % dependiendo de la zona de captura y de la condición de adultas o juveniles. Resumiendo, 60 de las 103 anchoas investigadas (un 62%) contenía algún genérico microplástico en sus intestinos. Las siguientes tres columnas evidencian que lo que se ha encontrado fundamentalmente en esos intestinos pueden clasificarse como fibras, la casi totalidad de las cuales han sido conceptuadas por los investigadores como microfibras, con tamaños inferiores a 5 milímetros, mientras que fibras más largas que ese valor (mesofibras) o microplásticos de otras morfologías son prácticamente inexistentes. Eso corrobora, una vez más, lo que en los últimos tiempos están evidenciando muchos estudios llevados a cabo en ríos y océanos de países occidentales con estrategias adecuadas de recogida de basura plástica, en los que son las fibras y no los trozos de recipientes plásticos los principales componentes de la basura marina. Fibras que provienen, en primer lugar, de los tejidos que vestimos (ya sean fibras naturales, semisintéticas o sintéticas), que se encuentran en suspensión en el aire y son transportadas por las corrientes de aire hasta sitios inhóspitos (sobre las fibras prometo una entrada en breve). También son fibras las provenientes de las artes de pesca (redes, sedales) que las flotas abandonan en el mar.

La séptima columna da el número medio de microfibras encontradas en cada anchoa investigada y es la que a mí me ha llamado la atención. Ese parámetro solo ha merecido una corta referencia en el artículo original y, que yo sepa, no ha sido mencionado en los artículos difundidos en los medios. Ahí se puede constatar que ese número no va más allá de una o dos microfibras por intestino (los valores oscilan entre 1.55 y 2.00, dependiendo de las zonas de captura y la edad de las anchoas). La captura es un episodio aleatorio en la vida de una anchoa concreta, lo que vendría a decir que esas anchoas, en ese momento, tenían una o dos fibras en su intestino y, probablemente, las tendrían varias horas o días después. Mi conclusión es que esas dos fibras estaban ahí como consecuencia de procesos digestivos cortos en los que las anchoas están digiriendo cosas y defecando los restos. Y en promedio, en cada instante, solo tienen dos fibras en su intestino. En caso contrario, si las fibras se acumularan en la anchoa, tendría que haber muchas más. Eso también está de acuerdo con la mayoría de la bibliografía existente sobre el efecto de los microplásticos en peces y aves marinas. En la mayoría de los casos, los microplásticos se comen y se devuelven al mar en forma de heces. Algo parecido a lo que hacemos nosotros con muchas de las fibras y otras partículas que ingerimos o inhalamos cada día como consecuencia de la contaminación atmosférica o la comida que comemos y bebemos. Y eso mismo pasará cuando el bonito o el atún se coma la anchoa (su presa favorita).

En el artículo de El País arriba mencionado, la investigadora implicada habla de que una próxima etapa en sus investigaciones es estudiar el impacto que esos microplásticos detectados en estos peces puedan tener en las personas que se alimentan de ellos. Yo tengo claro (aunque puedo equivocarme) que un impacto mínimo, por no decir inexistente. Cuando yo compro anchoas, mi pescatero, un auténtico cirujano eviscerando los cuerpos de cualquiera de los pescados que le compro, se preocupa de que no me coma las tripas de las anchoas. Así que difícilmente me voy a comer la una o dos fibras que, en promedio, pudieran almacenar los pescados investigados. Las posibles fuentes de preocupación podrían ser dos. Una proveniente de la duda (razonable) de que si las fibras fueran suficientemente pequeñas (nanofibras) pudieran pasar las paredes celulares e incorporarse a la musculatura del pez. La otra fuente de preocupación estaría motivada por el hecho de que esas fibras se constituyeran en "almacenes" de sustancias tóxicas existentes en el mar y que pudieran transferirse a la grasa o la musculatura del pez, entrando así en una cadena que pudiera alcanzarnos. Pero ninguna respuesta a esas preocupaciones pueden desprenderse de los datos proporcionados por los autores, así que, en su caso, los comentarios al respecto recogidos en los medios, son simples especulaciones. Y, además, en este Blog ya se ha documentado que, en el caso de los nanoplásticos, estamos muy lejos de tener datos al respecto y que en lo relativo a los microplásticos como vectores de sustancias tóxicas, los últimos trabajos de grupos relevantes consideran que esa es una conclusión poco fundamentada. Véase, por ejemplo, esta entrada o esta otra.

En definitiva, que no tengo nada contra artículos como el mencionado, que tiene su interés de cara a monitorizar el efecto de la contaminación por plásticos u otros contaminantes en las poblaciones de peces en el Mediterráneo. Pero lo que me molesta (y sobremanera) es que de los datos reales expuestos en el mismo y que tienen su mérito, solo se publiciten las conclusiones más fácilmente vendibles a los medios de comunicación, se escondan otras (como la aquí comentada) y se difundan opiniones que los datos del trabajo concreto no avalan.

Y ahora a convencer a los amigos que, cuando se pueda, sigan comiendo anchoas.

Leer mas...

jueves, 11 de junio de 2020

Aromas confinados (entrada invitada*)

Entre los múltiples estudios y encuestas sobre el comportamiento de los ciudadanos durante el reciente confinamiento, no ha podido faltar un estudio que determina un posible aumento del consumo de alcohol en Europa, durante este tiempo tan inusual. Sin entrar en muchos detalles, algo menos de la mitad de la población ha mantenido sus costumbres, lo que deja abierta la esperanza de que, en este país, todavía reina la serenidad pase lo que pase. Entre la otra parte de los entrevistados parece haber habido un aumento en el consumo de vino durante el confinamiento mientras que, curiosamente, el consumo de los destilados y de la cerveza ha bajado. Si la razón que se esconde detrás de este aumento en el consumo de vino se debiera a una necesidad de ahogar penas, resulta muy llamativo que la ciudadanía no haya recurrido a bebidas más económicas, como puede ser la cerveza, o más potentes, como los destilados. Por ello, el hecho de que haya aumentado solo el consumo de vino y además en la totalidad de los cuatro países en los que se ha hecho la encuesta (Portugal, España, Francia e Italia), me confirma, como alemán del Norte, que he aterrizado en una zona civilizada del planeta.

Desde siempre, el vino (bueno) se ha asociado más que cualquier otra bebida alcohólica, con una cierta delicadeza que reside en sus aromas. Pero no hay que olvidar que mientras que un vino tinto contiene un 86% en volumen de agua, un 13% de alcohol etílico o etanol y un 1% (v/v) de otros compuestos (glicerol, polisacáridos, etc.), su contenido en aromas es casi despreciable en términos de concentración, pues la suma de todos los aromas no alcanza, en general, más de un 0,1% en volumen o, lo que es igual, unas 1000 ppm. Si esto ya parece poco, aún es mas sorprendente todavía que algunos aromas muy notables de esos mismos vinos no alcancen ni las 10 ppm (una concentración diez mil veces menor que la del etanol).

En alguna de las muchas versiones de la famosa y muy lograda “rueda de los aromas” que se ve arriba (y que podéis ampliar clicando en ella) encontramos, por ejemplo, que lo que en el vino blanco se llaman aromas de “frutos tropicales”, como el plátano o la piña corresponden, respectivamente, a moléculas como el acetato de isoamilo y el hexanoato de etilo. En algunos vinos estas sustancias no llegan a estar presentes en concentraciones mayores a 1-5 ppm. Estas moléculas se han hecho famosas en los yogures y dulces aromatizados porque recuerdan claramente a las frutas de las que provienen. No obstante, realmente son solo los componentes principales de los aromas de estas frutas, los llamados aromas “clave”, mientras hay otros compuestos que contribuyen también a lo que se llama el “perfil de aroma” de una fruta concreta. En el plátano, por ejemplo, además del acetato de isoamilo, existen entre 5-10 compuestos adicionales que completan el aroma. La industria de la alimentación se suele limitar a añadir generalmente el aroma clave a ciertos productos y a compensar la falta del resto con unas etiquetas apetitosas y coloridas. Como me decía hace muchos años un reconocido investigador de aromas (el Prof. Ralf Berger, autor del libro Aroma Biotechnology): “nuestros hijos ya no sabrán cuál es el aroma verdadero de una fruta porque se habrán acostumbrado al aroma, bastante más rudimentario, de los yogures de fruta que consumen”.

Mientras en la fruta los aromas claves no superan la decena, en el caso del vino es completamente diferente. Se estima que hay hasta cientos de compuestos que completan su perfil aromático, lo que explica esa cierta sutilidad y complejidad en su aroma. Pero, además, esto tiene unas consecuencias muy interesantes.

Para empezar, no han faltado intentos de producir vinos sin alcohol, supuestamente por razones de salud, pero seguramente también con la vista puesta en un mercado significativo de países donde el consumo de alcohol no está permitido. La osadía de extraer el etanol del vino parece tarea fácil, ya que un 13% en volumen es una cantidad considerable y no es precisamente como buscar una aguja en un pajar. Pero el etanol no solo está en el vino como producto de la bioconversión del azúcar en la que, además, surge el dióxido de carbono (CO2). El etanol tiene también la importante función de mantener los aromas en el vino. Esto se debe al hecho de que la mayoría de los aromas son casi insolubles en agua, lo que se conoce como “hidrofobicidad”. Como decía uno de mis profesores, un gentleman y una eminencia en tecnología de membranas, esto es así porque si fuesen solubles en agua (hidrófilos), los aromas de las plantas se perderían instantáneamente con una lluvia o durante el regadío. Como esto no sucede, la reineta vasca mantiene su aroma a pesar de sus frecuentes encuentros con el agua inherente a nuestro "envidiable" clima. Es por ello que los aromas requieren de un entorno adecuado para mantenerse en su sitio dada su hidrofobicidad.

Y, volviendo al vino, precisamente este es el papel del etanol. El etanol tiene una particularidad: se disuelve bien en el agua (hasta mejor que en si mismo) pero tiene también una parte hidrófoba debido a los carbonos de su estructura química. De este modo, el etanol sirve de mediador entre el agua hidrófila y los aromas hidrófobos para los cuales actúa como “co-disolvente”, con la consecuencia de que, si intentamos separar el etanol del vino, una buena parte de los aromas, y además de los más relevantes, se irán con él. Es por eso por lo que se encuentran muy pocos vinos sin o con bajo porcentaje de alcohol, y si alguien un día termina bebiendo uno, probablemente desearía no haberlo encontrado. En este contexto, surge naturalmente la siguiente duda: ¿cómo entonces es posible que haya tanta cerveza sin alcohol? La razón se debe a que el perfil aromático de una cerveza es bastante mas simple que el de un vino y, además, el dióxido de carbono enmascara, por la sensación de frescor que ofrece, la falta de cuerpo aromático. Por ello, la cerveza permite una manipulación bastante más fácil.

Otro aspecto muy interesante del vino es el precio de algunas cosechas con un perfil organoléptico particularmente apreciado, muchas veces asociadas a una garantía de su zona de origen, como es, por ejemplo, el caso del Barolo italiano. Siendo también el vino un negocio, es de esperar que haya intentos de fraude, vendiendo vinos de fuera de estas zonas como si pertenecieran a ellas. El problema de comprobar la autenticidad de los vinos reside en el hecho de que su análisis químico es laborioso, debido a la multitud de compuestos que contiene. Utilizar paneles organolépticos, constituidos por humanos, para estas tareas rutinarias tampoco es eficiente ya que nuestra nariz tiende a saturarse rápidamente. Por ello, hace ya mas de 30 años, varios investigadores empleaban lo que parecía el Santo Grial de la olfactometría, la llamada “nariz electrónica”. Una publicación pionera [K Persaud and G Dodd, Nature 299, 352-355 (1982). doi: 10.1038/299352a0] provocó que muchos investigadores buscaran imitar la función de una nariz humana, utilizando sensores basados en conceptos relativamente básicos. Sobre narices electrónicas ya se habló en este Blog en fechas tan lejanas como 2006.

El concepto principal era utilizar materiales muy distintos, desde polímeros hasta óxidos metálicos, para desarrollar una serie de sensores que se exponían al aroma de los vinos (en este caso a la parte volátil). La idea era que cada uno de estos materiales interaccionara de una manera distinta con los aromas y, al mismo tiempo, cada aroma interaccionara de una manera distinta con cada sensor, dando lugar a un “perfil” de respuesta del conjunto de sensores que, supuestamente, era específico para cada compuesto y/o aroma. Con tanta ciencia poco definida, uno ya se imagina que la manera de extraer alguna información útil de este tipo de medidas era la estadística, y en concreto, el llamado análisis de los componentes principales. En términos muy sencillos, este método busca encontrar los dos parámetros (los componentes principales) que mejor describen un conjunto de datos. Representando estos dos componentes en un gráfico x-y, los datos similares se agrupan mientras los datos distintos se mantienen distanciados, como se ilustra en la figura. Las narices electrónicas parecían hacer maravillas, lograban diferenciar los aromas entre vinos de cosechas diferentes (como en la figura) o diferenciar entre las regiones de origen de los vinos. Parecía que se había conseguido emular una obra maestra, nuestra nariz, con unos sensores químico-físicos y un procesamiento de datos estadístico relativamente estándar.

Pero como tantas veces ocurre, cuando la ciencia se entusiasma demasiado con algo se olvida de los detalles. Se habrán fijado que el contenido de etanol indicado en las etiquetas de las botellas no es una ciencia exacta. Donde dice “13%” pueden ser tanto 13,0 % como también 12,8% o 13,2%. Para un vino, este 0,2% de etanol arriba o abajo no supone mucha diferencia y cambia fácilmente entre cosechas. Así que si recuerdan que mencioné al principio que la concentración de aromas está precisamente en este intervalo, en el 0,1 % en volumen o incluso por debajo, entonces pueden fácilmente imaginar cuál ha sido el verdadero origen de la discriminación entre vinos de cosechas y zonas diferentes en muchos trabajos publicados en aquella época. Acompañar las medidas por unos análisis convencionales de toda la vida, empezando por el contenido de etanol, hubiera evitado probablemente una ola de publicaciones que, al final, no servían para mucho más que para engordar el currículum vitae de algunos… pero igual precisamente por eso no se había hecho el esfuerzo.

Mientras estaba escribiendo esta entrada, me llamó la atención un reciente trabajo [J. Han y otros, Chem, 2(6), 817–824 (2017). doi:10.1016/j.chempr.2017.04.008] que habla de la clasificación entre distintas variedades de whisky escocés, utilizando algo similar a la “nariz electrónica”. Un trabajo científico ciertamente fantástico, con muchos datos, y en el que se logra diferenciar entre diferentes tipos de whiskys, supuestamente basándose en su composición. Sin embargo, cabe resaltar que en la primera tabla, en la que se encuentra el listado de los whiskys estudiados, se hace también mención del contenido de etanol de las muestras analizadas, resultando que el contenido de las mismas varía entre un 40 y un 48% en volumen. El trabajo se vende reivindicando un impacto inmediato y significativo en la sociedad. Algo que ya hemos escuchado desde hace 30 años en la comunidad científica tras la publicación del trabajo de Persaud y Dodd antes mencionado. Al fin y al cabo, como muy sabiamente me advertía otra eminencia científica y buen amigo, en Ciencia, la rueda se reinventa de 20 en 20 años.

(*) El autor de esta entrada es mi colega y amigo Thomas Schäfer, con un historial científico relevante y variado. En mi actual situación de jubilata, sin embargo, la parte de historial que más me interesa de mi "amigo alemán" es todo lo que aprendió sobre el vino durante su estancia en Portugal.

Leer mas...

viernes, 29 de mayo de 2020

El denostado cloro

En 1906, en la reunión anual de la American Water Woks Association (AWWA), una asociación sin ánimo de lucro, creada en 1881 "para mejorar la calidad y la distribución de agua", uno de sus miembros más destacados, el ingeniero y botánico George Whipple, se manifestó en torno a la polémica desatada en Estados Unidos por los primeros intentos de emplear compuestos químicos para eliminar del agua de grifos y fuentes una serie de microorganismos. Que entonces ya se sabía que eran los responsables de las epidemias de diverso tipo (cólera, fiebres tifoideas, gastroenteritis y un largo etcétera) que, repetidamente, asolaban las cada vez más pobladas ciudades americanas. Decía allí Whipple que "es difícil contemplar un futuro escenario en el que productos químicos venenosos se añadan al agua potable para eliminar bacterias". Pero en muy poco tiempo, la terquedad de los datos que se fueron acumulando en ciudades que, como Jersey City o Filadelfia, fueron implantando la cloración del agua, acompañada de la filtración de la misma a través de lechos de arena (algo que se sigue haciendo hoy en la mayor parte de los sitios), hicieron cambiar de criterio a nuestro ingeniero, que pasó a colaborar activamente en los planes de cloración de otras ciudades americanas.

Para la cloración del agua y la eliminación de patógenos se emplean cantidades relativamente pequeñas de unas sales llamadas hipocloritos, la más habitual de las cuales es el hipoclorito sódico. La disolución de esa sal en agua es la popular lejía, uno de cuyos anuncios vintage adorna el inicio de esta entrada. La misma humilde lejía que también está jugando un papel fundamental en el control de la pandemia que nos ha hecho la pascua en este inicio del infausto 2020. Está suficientemente probado en la literatura científica, y en la práctica sanitaria, que el uso en la limpieza de superficies de disoluciones tan diluidas como la preparada con 20 mL de lejía convencional, diluidos hasta un litro con agua, hace que el Coronavirus sucumba en menos de 5 minutos.

A pesar de este potencial defensivo que nos proporcionan estos compuestos que contienen cloro en su molécula, el elemento químico de ese nombre no ha estado nunca muy bien visto. Es muy probable que todo arranque con el libro de Rachel Carson, publicado en 1962 bajo el título Silent Spring (Primavera Silenciosa), un alegato contra los insecticidas en general y contra el DDT en particular que, a falta de un cloro, tiene hasta cinco en su molécula. También hay cloro (y abundante) en moléculas como las dioxinas (que recuerdo que el hombre nunca ha fabricado intencionadamente), en los bifenilos clorados (PCBs), en los CFCs y, sin alejarnos mucho de la cloración del agua, en los famosos Trihalometanos (THMs), compuestos que se forman merced a la reacción del cloro empleado en la cloración con restos de materia orgánica (ácidos húmicos y fúlvicos) proveniente de hojas y troncos de plantas que pueda haber en el agua de los manantiales que nutren nuestros grifos. De los THMs, descubiertos en los setenta, y de su carácter cancerígeno, ya os hablé con detalle en una entrada de 2014.

Así que, con todos estos antecedentes, podría entenderse que, en 1991, Greenpeace abogara por la prohibición total "del uso, la exportación e importación de compuestos orgánicos clorados (DDT, PCBs,...), cloro elemental (es decir el gas cloro) o agentes oxidantes clorados (como el dióxido de cloro o los hipocloritos)". Nota: los paréntesis son míos. Concluyendo que "no existen usos del cloro que podamos considerar como seguros". Esa petición de prohibición y los comentarios que acabo de mencionar aparecen en numerosos artículos y libros, siempre con la misma referencia [J. Thornton, The Product is the Poison: The Case for a Chlorine Phase-Out (Washington, D.C.: Greenpeace, 1991)] pero, por más que lo he intentado, ese documento, que suena como un documento interno de Greenpeace, no aparece por ningún lado.

La hipótesis más probable que manejo es que Greenpeace haya retirado de la circulación ese documento, aunque si lo encontráis y me lo pasáis me retractaré de lo dicho. Porque la radicalidad de esa petición fue desmesurada y la organización ha tenido que desdecirse en muchos de los frentes que, de una u otra forma, están implicados en ella. No hay que olvidar que cloro hay en la sal común o en el ácido clorhídrico de nuestro estómago. Cloro hay en muchos medicamentos, como en la cloroquina o la hidroxicloroquina que, aunque no parecen tan eficaces contra la Covid-19 como Trump pretende, lo han sido en el tratamiento de la malaria o de enfermedades autoinmunitarias como el lupus eritomatoso o la artritis reumatoide. Y cloro hay en el PVC, otro de los objetivos de Greenpeace en el pasado, pero esa es una historia que quedara para otro día.

Prefiero, para terminar, centrarme en el asunto con el que se ha iniciado esta entrada. Desde principios del siglo XX, millones y millones de humanos se han beneficiado y se siguen beneficiando de poder abrir un grifo y beberse, con total seguridad, el agua que sale de él, gracias a la acción biocida de las disoluciones de hipoclorito. Y cuando, por alguna razón, se ha descuidado esa cloración, las consecuencias han sido graves. Un ejemplo esclarecedor es la epidemia de cólera que asoló Perú en febrero de 1991, el mismo año del documento de Greenpeace arriba mencionado. Fue la primera epidemia de cólera conocida en ese país desde principios del siglo pasado, con mas de trescientos mil casos registrados y casi 3000 muertes.

Las causas del inicio de la epidemia no están claras. Hubo sectores que se la imputaron a Greenpeace y a su activa política contra el cloro en aquellos momentos. Hay otros que culparon a la Agencia Medioambiental Americana (EPA), que había prevenido a algunos países en vías de desarrollo de la relación entre concentración de cloro empleada en la cloración y generación de trihalometanos, lo que habría hecho que los funcionarios peruanos aflojaran la mano, empleando dosis tan bajas de hipoclorito que no resultaron eficaces para acabar con la bacteria causante del cólera. Fuera lo que fuera, no parece que hoy en día Greenpeace esté contra la cloración de agua, como puede comprobarse en este documento, en el que años más tarde, explicaban su versión del brote peruano.

Y algo parecido, aunque mucho menos grave, ocurrió en 2018 cerca de aquí, en Usúrbil, cuando uno de los depósitos que almacenaba agua proveniente de manantiales "de toda la vida" pero no controlados (y por tanto no clorados) por la Mancomunidad del Añarbe, se contaminaron con un virus. Como ese agua se mezclaba con la proveniente de la citada Comunidad, el virus acabó finalmente en el agua de los hogares del lugar, enviando a gran parte de sus habitantes a visitar con frecuencia el WC.

Leer mas...

lunes, 11 de mayo de 2020

Polímeros transparentes para una pandemia

Es muy probable que a muchos el nombre Plexiglas no les suene de nada. Es una marca registrada y espero que la empresa que tiene la propiedad del nombre no se meta conmigo, porque lo cierto es que les voy a hacer propaganda gratis. En lo que a mi respecta, esa palabra forma parte de mi memoria histórica. La aprendí cuando era un niño un tanto salvaje, jugando en un barrio que, en los cincuenta y principios de los sesenta, estaba en las afueras de Hernani, aunque hoy es casi el centro del pueblo donde viví hasta los diecisiete años. Y la aprendí cuando aún no sabía que iba a estudiar Química ni que, años más tarde, me iba a encontrar con el material que responde a ese nombre comercial siendo ya un incipiente investigador en polímeros.

En una entrada que escribí en un Blog mantenido por mis amigos de la Asociación de Divulgación Científica de la Región de Murcia (ADCMurcia), os contaba que mis primeros recuerdos del Plexiglas contienen imágenes de ese barrio, con tendederos de ropa en ventanas y balcones que, los días de pronóstico incierto, se protegían con unos trozos de plástico bastante cutres que, a pesar de su presencia poco gratificante y su dificultad para ser doblados, la gente conservaba como oro en paño. No sólo para esos menesteres sino para otros igualmente importantes en la época de penurias de la que hablamos como, por ejemplo, para conseguir que cunas y camas no se mojaran con incontinencias infantiles o seniles. Pues ese mismo material, aunque en un formato diferente, es el que está irrumpiendo en estos últimos días en muchos comercios, en forma de una barrera de protección transparente y segura (como la de la foto) frente a la pandemia que nos acosa. Y quién sabe si no nos aislarán pronto en cajitas de ese material cuando estemos en terrazas y playas. Hasta la propietaria de la tienda de chuches, debajo de mi casa y que sabéis que no es santa de mi devoción, ha instalado una de esas mamparas. Voy a tener que cambiar mi opinión sobre ella.

Aunque hay varios nombres comerciales para denominar a ese material, Plexiglas es el que tradicionalmente se asocia con el polímero que los químicos llamamos poli (metacrilato de metilo), PMMA en su acrónimo en inglés, perteneciente a la familia de los plásticos acrílicos, cuyos numerosos miembros sirven para multitud de cosas. El propio PMMA, por si solo, tiene también una gran variedad de aplicaciones. Por ejemplo, en la entrada mencionada de la ADCMurcia, dediqué buena parte de ella al papel que jugó este plástico en el desarrollo de las lentillas oculares. Pero hoy nos vamos a centrar en el Plexiglas y en las personas que lo desarrollaron.

Otto Röhm nació en 1876 en la localidad alemana de Öhringen. Con quince años empezó a trabajar como auxiliar de Farmacia para, posteriormente, seguir estudios sobre esta materia y obtener el título de farmacéutico en 1899. Pero, tras conseguirlo, decidió estudiar Química en la Universidad de Tubinga. O era un tío muy listo o el tránsito de farmacéutico a químico era entonces muy fácil, porque para 1901 ya tenía hasta el Doctorado, con una tesis sobre los productos de polimerización del ácido acrílico, un asunto este, el de la polimerización, que si habéis leído mi reciente entrada sobre "la Química mugrienta" no parecía tener un futuro muy halagüeño en ese momento. Precisamente por ello, cuando decidió ponerse a trabajar, empezó en el negocio de los curtidos, desarrollando una gama de productos que resultaron revolucionarios en los procesos de curtición. El hombre hizo un buen dinerito y creó su propia empresa con su colega y tocayo Otto Haas, la hoy famosa Röhm und Haas (lo siento pero Blogger no me deja escribir el símbolo habitual entre los dos nombres). Durante un tiempo se siguieron dedicando a los curtidos y a los textiles pero, en 1912, la cosa ya estaba bastante madura en el asunto de los plásticos como para que decidieran dar un vuelco a su empresa y centrarse en ese emergente mundo.

Donde, tras muchos problemas e incertidumbres, la gloria llegó de forma un tanto inesperada. Röhm und Haas había iniciado su andadura polimérica sintetizando varios poliacrilatos, unos parientes de los polimetacrilatos. Pero un día (¡Ay la chiripa!) una botella de un líquido oleoso que llevaba una temporada cerca de una ventana donde daba el sol, se partió en pedazos, dejando al descubierto un bloque de un sólido transparente que, enseguida, todo el mundo atribuyó a que el líquido que estaba en la botella (metacrilato de metilo) había polimerizado para dar lugar al sólido poli (metacrilato de metilo) (PMMA) que acabó rompiéndola. En sucesivos trabajos posteriores se pudo buscar una vía reproducible y económica para llevar a cabo la polimerización y se fueron, poco a poco, conociendo las excelentes propiedades del material. El producto se patentó en 1933 y el nombre Plexiglas se formó a partir de Plexigum, con el que se denominaba la gama de resinas acrílicas que hasta entonces vendía la empresa, y el final glas, vidrio, porque dadas sus propiedades, estaba claro para ellos que lo que habían descubierto era un vidrio artificial u orgánico, esto último por tratarse de un producto derivado de la Química del carbono, la Química Orgánica, y no, como en el caso del vidrio, de la Química del silicio, la Química Inorgánica.

El poli (metacrilato de metilo) es el más transparente de todos los plásticos convencionales, es varias veces más resistente al impacto que el propio vidrio a igualdad de grosor, siendo como es mucho más ligero que él. No se decolora apreciablemente por la acción de los rayos UV durante varios años y es un buen aislante térmico y acústico. Aunque se raya con facilidad por objetos punzantes es fácil de reparar y, finalmente y en lo que tiene que ver con las mamparas de protección y otros usos, se puede moldear en planchas bidimensionales o en formas mucho más complicadas aplicando calor.... En fin, un chollo de material y encima a buen precio, hasta ahora... Porque el problema, a día de hoy, es que el COVID-19 ha generado semejante demanda de esas mamparas que ha alterado por completo el mercado global de su materia prima y anda todo el mundo peleándose, y pagando bastante más, por tener acceso a este material.

Y ya que hablamos de polímeros transparentes y COVID-19, os diré que otro material, con un nombre que resuena al de Plexiglas, EuroPlex PPSU, es una poli (fenilensulfona) que la misma Röhm und Haas está vendiendo para los frontales de esas viseras protectoras que usan los sanitarios, pero que también se ven en comercios y en la calle. Así que, puestos a reconocer protagonistas de la pandemia, los plásticos tendrían que tener su huequecito. Pero ya sé que diréis que es una opinión sesgada de vuestro Búho.

Leer mas...

miércoles, 22 de abril de 2020

Flatología

Uno de los comentaristas habituales de este Blog es un amigo que responde al seudónimo de Flatólogo. Nos conocimos virtualmente haciendo comentarios en el delicioso Blog lamargaritaseagita que mantiene Jorge Ruiz-Carrascal sobre gastronomía y alimentos. Aunque ahora lleva parado desde finales de 2016 y muchos lo echamos de menos y esperamos que se reactive. Tanto a Flatólogo (Manuel Romera) como a Jorge, a los que considero amigos (si ellos me dejan), los he conocido después personalmente, compartiendo mesa y mantel y aprendiendo de lo que saben. Es una de las ventajas de las Redes Sociales, que conoces gente estupenda (y sabia) que, de otra manera, no hubieras conocido nunca.

El caso es que en las ocasiones en las que he hablado o me he escrito con Flatólogo, nunca se me ha ocurrido preguntarle por qué ha elegido ese seudónimo. Flatólogo quiere decir experto en flatos (o pedos, o cuescos, que diría Cela) y resulta que Manuel ejerce la Medicina pero como oftalmólogo (lo de experto en cuestiones gastronómicas es su vicio). Igual nos aclara el asunto cuando este post se publique. Viene a cuento tal escatológica entradilla porque otro amigo, el ilustre palentino Néstor Núñez, me mandaba ya hace tiempo un interesante email en el que me preguntaba cosas sobre la composición química de las flatulencias, por qué arden y otras interesantes cuestiones ligadas a sus recuerdos juveniles y sus preocupaciones actuales. Quise contestarle enseguida pero luego me lié con un par de charlas que tenía que dar y que llevaba mal preparadas. Y mas tarde me empecé a agobiar con el asunto del COVID-19, semanas antes de que el Gobierno se dignara hacer lo mismo, y no tenía el cuerpo para estas cosas. Pero ya ando algo mejor de ánimo y vamos a contarle algo de lo que preguntaba, antes de que sea muy tarde.

La composición de una flatulencia es una compleja combinación de una serie de factores que varían mucho de una persona a otra y que tienen que ver con la comida que uno ingiere, la colección de bacterias que pueblan su colon además de un largo etcétera que podríamos denominar la bioquímica de cada uno. Pero, al final, los mayores componentes de un pedo son gases que no huelen, como el nitrógeno y el oxígeno del aire, que ingerimos continuamente, u otros como el hidrógeno, el metano o el dióxido de carbono (CO2) que provienen bien de la digestión o de la actividad de las bacterias en el intestino.

Los gases que huelen (y algunos francamente mal, como es obvio) son otros, generalmente sustancias en cuya molécula hay algún átomo de azufre (metanotiol, dimetil sulfuro o ácido sulfhídrico) o nitrógeno (indol, escatol). Pueden estar en cantidades pequeñas, a veces hasta ridículas pero, como ya hablamos aquí en el caso de los perfumes o los vinos, nuestra nariz en un sensor particularmente eficaz para detectar algunas moléculas y estas están entre ellas. La mayor o menor presencia de estos gases pestilentes depende de nuestra dieta (de ahí la foto que ilustra la entrada, el brócoli contiene mucho azufre) o de nuestra salud (de hecho, hay estudios tratando de correlacionar niveles de algunos de los gases presentes en flatulencias y heces, con ciertas enfermedades del tracto intestinal).

Internet está lleno de vídeos en los que la gente prende fuego a sus pedos. Y ello se debe, sobre todo, a la presencia en los mismos del hidrógeno y del metano (altamente inflamables). Además, la cantidad de hidrógeno que se produce en nuestras digestiones en un día puede llegar a ser de varios litros, merced a la acción de ciertas bacterias sobre los carbohidratos que ingerimos. Afortunadamente para los que acercan cerillas y mecheros a su culo mientras se pean (del verbo peer, ver RAE), otras bacterias hacen reaccionar el hidrógeno con los sulfatos para producir ácido sulfhídrico (el del clásico olor a huevos podridos), mientras que unos microorganismos (las arqueas) ayudan a convertir ese hidrogeno en metano y agua al reaccionar con el anhídrido carbónico. Porque si así no fuera, y evacuáramos todo el hidrógeno producido, el porcentaje de quemados por estas prácticas sería más alto del que actualmente es.

Otra de las dudas de mi amigo palentino está relacionada con sus experiencias juveniles, según las cuales las flatulencias quemadas no olían como el pedo original. La Química también tiene explicación para ese extremo. Cuando aplicamos la cerilla o el mechero a nuestro trasero, lo que fundamentalmente quemamos es hidrógeno y metano en las clásicas reacciones de combustión de ambos, reacciones que solo producen agua en el primer caso y CO2 y agua en el segundo. Ni los gases originales ni los que se producen en esas reacciones huelen, así que el cambio tiene que provenir de la combustión de algunos gases odoríferos que, al quemarse, desaparecen como tales.

En las combustiones mas relevantes (las del hidrógeno y el metano), otro matiz es el color de la llama generada en estas divertidas (y peligrosas) prácticas. En vídeos grabados en la oscuridad usualmente se ve una llamarada azul, debida a la combustión del metano. Pero no todo el mundo produce la misma cantidad de metano en sus cañerías y muchos ni siquiera lo producen en cantidades adecuadas para el efecto, debido a la ausencia de los microorganismos que he mencionado en el párrafo anterior. En ese caso, uno puede seguir quemando pedos gracias al hidrogeno pero, en ausencia de metano, la llama producida es más bien amarilla o anaranjada.

Finalmente, Néstor me preguntaba sobre los niveles de flatulencia en veganos y carnívoros convictos y las repercusiones que eso pueda tener sobre los gases de efecto invernadero y el cambio climático. Una cuestión harto complicada sobre la que este vuestro Búho sabe poco o nada. Una revisión bibliográfica rápida en estos días de cocinamiento (como dice una amiga), me ha revelado que el tipo de investigación más habitual en estas cuestiones se centra en evaluar el impacto ambiental, en términos de producción equivalente de CO2, de las emisiones de gases de efecto invernadero derivadas de la totalidad de los procesos (uso de terreno, energía empleada, agua, etc.) implicados en la producción de dietas más o menos representativas de las posibles opciones alimenticias de los consumidores. Y parece desprenderse que la dieta vegana es la más sostenible. Aunque a mí, y creo que a Néstor, nos coge un poco mayores para un cambio radical.

Actualización (23/04, 9:17). Flatólogo ha respondido enseguida a mi requerimiento. Está en el primer comentario, aquí debajo. Y la infografía que menciona en él está aquí.

Leer mas...