jueves, 31 de agosto de 2017

El Sr. Perkin y el Heno de Pravia

Dadas las proclamas que envuelven el marketing de los perfumes, seguro que muchos de vosotros pensáis que la mayoría de los productos de marcas caras y conocidas son un delicado equilibrio entre extractos de diferentes flores, conseguido gracias a ese portentoso órgano que llamamos nariz y que es la herramienta más potente de los perfumistas más afamados. Pues bien, eso no es así. Salvo raras excepciones, el adjetivo más representativo para denominar a esa compleja mezcla de aromas que llamamos perfume podría ser el de semisintética. Es decir, algunos de sus componentes se extraen, efectivamente, de flores y plantas pero otros muchos son de carácter sintético, comercializados por grandes empresas dedicadas a ello. Y que no sólo han generado moléculas nuevas con aromas característicos e innovadores, sino que han reproducido en el laboratorio míticas moléculas de determinadas esencias, obtenidas a partir del mundo vegetal (o animal, pero eso es otra historia que conté hace poco). La proporción entre uno y otro tipo de componentes puede variar pero, a nivel global, podemos decir que casi el 90% en peso de lo que se emplea en un perfume es de origen sintético. Como estos productos son más baratos que los extraídos de plantas muy codiciadas por los perfumistas, muchas veces el precio es indicativo de la cantidad de extractos naturales que llevan.

Y sobre una molécula, originariamente extraída de la naturaleza y hoy usada, en su mayor parte, como sustancia química pura producida a nivel industrial, va esta entrada. Se trata de la cumarina, una molécula clave en el desarrollo de la industria del perfume a finales del siglo XIX. Pero antes, vamos a enfocar la entrada desde otro punto de vista, lo que estoy seguro placerá mucho a mis lectores de Irún, donde tengo algún que otro fiel seguidor.

Pravia, como muchos de vosotros seguro que sabéis, es una localidad asturiana. Pero probablemente no la asociéis a la marca comercial Heno de Pravia, ese conjunto de productos de perfumería desarrollados por la empresa creada por un irundarra de pro, Salvador Echeandía Gal, bajo el nombre de Perfumería Gal, que después fue englobada en el grupo Puig. A los futboleros os sonará el nombre del Stadium Gal, donde juega el Real Unión de Irún, en unos terrenos cedidos por el propio Echeandía. Dice la historia que en 1903 el mencionado Echeandía, junto con un amigo, Lesmes Sainz de Vicuña, también originario de la villa fronteriza, andaban de viaje por Asturias cuando quedaron prendados del olor a hierba recién cortada en un prado cercano a Pravia. Y no pararon hasta reproducir ese aroma en un producto, su jabón Heno de Pravia, que aún hoy en día se vende como rosquillas y prácticamente en todo el mundo, junto a otros productos como colonías, desodorantes, cremas de afeitado. Y la Química tuvo mucho que ver en este asunto, entre otras cosas porque otro Echeandía Gal, Eusebio, era un químico muy viajado para la época, con estudios en Berlín.

El día de fin de año de 2013, os contaba yo el descubrimiento por chiripa de la mauveína, un producto que abrió la veda a una gran parte de la gama de colorantes sintéticos que hoy se emplean en el mundo. El autor del descubrimiento fue un imberbe (18 añitos) William H. Perkin, que andaba a la búsqueda de la quinina y que por chiripa y a espaldas de su jefe, A.W. von Hoffmann, llegó a la mauveína. Mantuvo en secreto el descubrimiento, lo patentó y creó un imperio que le hizo lo suficientemente rico a los 30 como para dejar sus negocios a la familia y seguir dedicándose a lo que más le gustaba, generar nuevas moléculas de potenciales aplicaciones.

Y como no tenía un pelo de tonto, enseguida se dio cuenta de que uno de los productos que obtuvo en esos primeros años de andar a la suyo (1868), fue la cumarina, una sustancia que había sido aislada en los años veinte del siglo XIX a partir de la llamada Haba Tonka, que no es otra cosa que la semilla de un árbol llamado Dypterix odorata. Como en los casos de la vainilla y de la goma garrofín, que ya hemos visto en otras entradas, son esas vainas secas las que acumulan diversas sustancias que constituyen su aroma característico. En el caso que nos ocupa y entre otras sustancias constitutivas, el principal aroma del Haba Tonka lo da la cumarina, que se encuentra en ella en un porcentaje entre el 1 y el 3%. En cualquier caso, no son esas habas la única fuente de este aroma, igualmente presente en cosas como la vainilla, en la canela, en algunas variedades de hierba, en los tréboles, etc.

La irrupción de la cumarina sintética de Perkin en el mundo de la perfumería se produjo en 1882 en el famoso y hoy ya desaparecido Fougère Royal, una creación del perfumista Paul Parquet para la empresa Houbigant. Parquet usó cumarina en una concentración al 10%, junto con lavanda, geranio y musgo de roble en un intento de reproducir el aroma de los helechos (Fougère en francés). Desde entonces, han sido casi innumerables los perfumes que han seguido esa senda, perfumes que suelen agruparse dentro de la gama Fougères. Por ejemplo, la cumarina ha sido y sigue siendo un componente fundamental en la paleta olfativa de la casa Guerlain, en perfumes como el mítico Jicky o su famoso y selecto Tonka Imperiale, pero otras muchas casas famosas lo han empleado (Dior, Chanel, Givenchy...). Aunque no está del todo claro en la historia de la génesis del Heno de Pravia, muchos que saben del tema piensan que algo oyó Echeandía en la época sobre las ideas de Parquet y con ayuda del químico de la familia lo aplicó a su búsqueda del jabón que le ha hecho famoso. El nombre cumarina sigue apareciendo en algunas etiquetas de la marca Heno de Pravia, aunque por razones que explico debajo, quizás se hayan buscando fórmulas alternativas a su uso.

Porque si hoy Parquet se hubiera puesto a crear el Fougère Real no lo hubiera tenido fácil. Como otros muchos componentes de las cosas que nos aplicamos para oler bien, la cumarina ha tenido sus problemas "sanitarios" ligados a la creciente quimiofobia que nos invade y que hace que cualquier sustancia sintética sea mal vista. Es verdad que durante años estuvo envuelta en una polémica ligada a su carácter a su carácter hepatotóxico en ratas. O a la llamada "enfermedad del trébol dulce" que acababa con los conejos a base de hemorragias. Hoy sabemos que, bajo la acción de ciertos mohos, la cumarina contenida en los tréboles genera dicumerol, un potente anticoagulante. Sabemos también que los problemas de las ratas con la cumarina son mucho más graves que los que causa en los humanos, en los que es moderadamente tóxico para el hígado y el riñón, pero tendríamos que comer muchas habas de Tonka o cumarina pura todos los días para que la cosa fuera grave. También, como en otros muchos componentes de los perfumes y colonias, algunos estudios achacan a la cumarina un carácter alérgeno, por lo que la IFRA (International Fragance Association) restringe su uso en perfumes (categoría 4) a una concentración del 1,6%. Pero, digámoslo una vez más, esa restricción se aplica a la cumarina venga de las habas Tonka o de la cumarina pura y sintética vendida por las industrias que comercializan aromas.

Y esta disquisición final me lleva a comentar algo que me ha sorprendido últimamente en mis búsquedas en la red de material sobre la Química de los perfumes. En los foros de muchas webs dedicadas a estos temas, he descubierto que la gente se compra aceites esenciales y se prepara sus propios perfumes. No me parece mal como entretenimiento y búsqueda de aromas personalizados. Pero, ¿se mirarán las normas de la IFRA en lo relativo a cantidades máximas seguras a emplear de cada uno de esos aceites esenciales?.

Leer mas...

domingo, 27 de agosto de 2017

Microplásticos en tu sal

Mi ya finiquitada actividad investigadora ha estado centrada, durante casi cuarenta años, en el mundo de los polímeros, unos materiales que mucha gente simplifica en plásticos, algo inadecuado pero que no toca explicar ahora. Por ello, no es de extrañar que todavía me siga interesando todo lo que se cuece en torno a estos materiales que eclosionaron a lo largo del siglo XX. La mayor preocupación actual sobre ellos es qué hacer con sus residuos y, entre los varios frentes de esta problemática, está el tema de los residuos de plástico que se vierten al mar. Durante su vida en el mismo, muchos plásticos se fragmentan en trozos pequeños que se conocen, genéricamente, como microplásticos y que, en años recientes, han sido objeto de diversos estudios que muestran su presencia incluso en recónditos sitios de nuestros océanos y su impacto sobre la vida animal de los mismos.

Llevo semanas estudiando un voluminoso libro de casi 500 páginas titulado Marine Anthropogenic Litter (Basura Marina de Origen Humano, para que nos entendamos) una obra colectiva editada por Melanie Bergmann, Lars Gutow y Michael Klages y publicada en 2015 por Springer International Publishing. No me resulta fácil, porque en algunos de los temas estoy un poco pez, pero ando tomando interesantes notas de cara a ponerme al día y a hacerme una idea global del asunto para luego contar algo aquí. Pero, como aperitivo, os voy a contar algunas ideas al hilo de una noticia que me llegó por un tuit de ese monstruo de la divulgación científica que es Paco Villatoro (@emulenews). El tuit hace referencia a un artículo publicado online este 17 de agosto en los Scientific Reports de Nature por investigadores del Departamento de Ingeniería Química de la Universidad de Alicante. El artículo resume un estudio de los microplásticos presentes en diversas sales de mesa comercializadas en España. Un estudio similar ya se había hecho hace dos años sobre las sales comercializadas en China y otro se acaba de publicar en un numero precedente (en abril) del mismo Scientific Reports. Como consecuencia de ello, internet contiene ya algunos ejemplos de proclamas sensacionalistas sobre estos estudios cuando, creo yo, no debiera ser el caso.

Voy a comentar el artículo de los colegas alicantinos porque contiene algunos resultados que me han sorprendido. Se han estudiado 21 sales comercializadas en España, fundamentalmente provenientes de salinas marinas tanto del Atlántico (no dan marcas pero si localizaciones en Andalucía, Canarias y Galicia) como del Mediterráneo (Cataluña, Valencia, Murcia, Alicante, Baleares), así como tres sales de manantiales salinos en el interior, alejados del mar. Uno me cae cerca (Añana, en Alava, de cuya sal ya hablamos hace años aquí), los otros dos están localizadas en las provincias de Cuenca y Alicante. Esta última puede ser de la zona de Villena, una zona salinera con tradición centenaria. En el estudio, esas muestras se disuelven, se centrifugan para eliminar arena y otras partículas sólidas más densas, se filtran con filtros que no dejan pasar partículas de tamaño superior a 5 micras y los microplásticos así recogidos se cuantifican con ayuda de microscopios y se identifica su naturaleza mediante técnicas de análisis de plásticos convencionales (FTIR).

El primer resultado que me ha sorprendido es que tanto la sal de mar como la proveniente de salinas interiores contienen cantidades similares de partículas de microplásticos, (las de mar entre 50 y 280 micropartículas por kilo de sal y las de interior entre 115 y 185). Como me conozco bien la estructura del Valle de Añana y cómo se generaron en su día los manantiales que proporcionan agua con altos contenidos en sal (salmuera), el resultado es como para pensárselo.

Debéis saber que el Valle de Añana, hace más de 200 millones de años, estaba bajo el mar. La evaporación posterior del agua en ese valle cerrado generó una gran cantidad de sal que posteriormente fue cubierta por otros estratos. La posibilidad actual de obtener sal en Añana se explica por el fenómeno geológico denominado diapiro. En líneas generales, consiste en la ascensión hacia la superficie terrestre de materiales más antiguos debido a su menor densidad. El diapiro de Añana atraviesa en su ascenso algunos de los acuíferos más importantes de la región, por lo que se convierten en puntos de salida de las aguas confinadas en los mismos. Uno de los puntos de salida es el manantial de Santa Engracia, donde el agua es una muera que sale en carga, es decir a mayor presión que la de la superficie. Esto explica la gran saturación en sales, disueltas en los lechos salinos atravesados durante el ascenso del agua a lo largo de la chimenea diapírica, en condiciones de presión y temperatura superiores a las de superficie. Este manantial es el punto de partida de la explotación de Añana, con una salinidad media superior a 250 gramos por litro. Y no deja de sorprenderme que, si el proceso es así y está recogido en sesudos trabajos geológicos, ¿de dónde provienen los microplásticos de la sal de Añana?. Porque hay mucho "filtro" en todo el proceso. El artículo no hace reflexión alguna al respecto. Así que si alguien tiene constancia de las razones, no vendría mal que nos lo explicara en los comentarios.

Otro resultado que me llamó inicialmente la atención es la composición de los microplásticos analizados en la totalidad de las sales consideradas. El 83% es polietilen tereftalato (PET), el plástico empleado en las botellas de agua, bebidas de cola, etc., mientras que el resto corresponden, fundamentalmente, a microplásticos de polietileno y polipropileno, mucho más vendidos que el PET. En las de la sal china arriba mencionada, el componente más abundante es el celofán (que allí se sigue utilizando como envase), mientras que las cantidades de PET, PE y PP son más concordantes con su importancia en el mercado. Dicen los autores, y no me parece mal, que esto pudiera deberse a que la mayor densidad del PET le hace permanecer en el agua desde la que está cristalizando la sal durante todo el proceso, mientras que PE y PP, de menor densidad y que deben flotar en la salmuera, podrían ser arrastrados por los operarios durante las labores de manejo de lesta y ser, por tanto, eliminados más fácilmente de la misma.

El artículo termina con un apartado en el que los autores tratan de evaluar el impacto en nuestra salud de los microplásticos contenidos en la sal que consumimos, que es lo que imagino que a la mayoría de vosotros le interesa más, a la vista del título que le he puesto a la entrada. Sobre la base de un sencillo cálculo ligado al consumo de sal recomendado por la Organización Mundial de la Salud, los autores establecen que podemos meternos al coleto del orden de 500 piezas de microplástico por año, lo que les parece una cantidad irrelevante. Y estoy de acuerdo, porque, en primer lugar, esos trocitos de plástico no los digerimos y por tanto saldrán tal cuales, igual que otras cosas indeseadas que digerimos, como, por ejemplo, los sólidos contenidos en chipirones o chopitos poco limpios, almejas y similares.

En ese mismo apartado, el artículo hace referencia a los dos temas que siempre aparecen en los artículos relacionados con la contaminación de plásticos en el mar. El primero, los problemas que puede causar a pájaros y peces la ingestión de los mismos. Dependiendo del tamaño del ser vivo y del trozo de plástico engullido, el asunto puede llegar a la muerte del animal, pero no por contaminación sino por simple bloqueo de su tracto gastrointestinal.Y, de nuevo, no solo plásticos ingieren pájaros y peces creyendo que les pueden alimentar.

El otro asunto es más sutil y se basa en que los microplásticos pueden actuar como "refugio" de sustancias tóxicas con carácter lipofílico (aquellas que se disuelven mejor en grasa que en agua). Y entre ellas se suelen citar, sobre todo, a los Contaminantes Orgánicos Persistentes (POPs en inglés) como los bifenilos policlorados o las dioxinas y sus parientes los furanos. Cuando esos microplásticos y su carga de POPs son ingeridos por animales, la teoría es que estas sustancias se introducen en la cadena de alimentación y llegan hasta los humanos.

Yo soy bastante escéptico sobre el asunto (al menos cuantitativamente), pero necesito ordenar mis ideas y en ello estoy con el libro arriba mencionado. Si llego a alguna conclusión, sea políticamente correcta o no, la contaré. Mientras tanto, no me sean guarros y lleven los plásticos que ya no puedan usar al correspondiente contenedor. Y si son padres o abuelos, ilustren a su descendencia en este problema. Yo lo sufro todos los días en mi portal con una tienda de chuches adyacente.

Leer mas...

lunes, 21 de agosto de 2017

Ionizadores de agua

Todo comenzó hace ya algunos meses (bastantes). Mi comadrona estaba viendo uno de esos programas de la tele que le gustan, donde se muestran las casas más fabulosas del mundo mundial. En este caso se trataba de una casa en Marbella, propiedad de uno de esos rusos enriquecidos por el petróleo. Una casa que, por tener, tenía hasta un helipuerto y dos hoyos de golf. Aparte de envidias no explícitamente declaradas y que mis lectores intuyen, lo que captó mi atención es que, al enseñar su casa, la rusa del magnate mostró, entre otras cosas, un aparato adosado al grifo de agua de su cocina, con pinta de dispositivo electrónico de calidad y que, según explicó, dividía el agua de grifo en dos tipos de aguas: una alcalina, buenísima para la salud y otra ácida que viene bien para fregar, limpiarse el cutis, etc... Me quedé con la idea de enterarme sobre el asunto pero la cosa, como otras muchas, no ha pasado hasta ahora de unas notas amontonadas en mi escritorio. Hasta que, desde hace unas semanas, se me ha pedido hasta tres veces mi opinión sobre temas relacionados con estos dispositivos.

Cuando me puse a investigar en serio, resulta que estos mal llamados ionizadores de agua tienen una larga historia que se remonta a principios de los años cincuenta, aunque ha sido en las últimas décadas cuando la cosa ha explotado en el mercado, de la mano de diferentes empresas y científicos, fundamentalmente japoneses. Basta con que escribáis water ionizers en Google, seleccionéis el apartado imágenes y os aparecerán cientos de dispositivos existentes en el mercado. Los precios pueden variar de marca a marca, pero los más reputados (no voy a dar nombres para que no se metan conmigo) pueden llegar a costar casi 6000 €. En un artículo de 2013 que tengo encima de la mesa, se cifra en unos 200.000 el número de estos dispositivos que se venden al año y muchos de ellos, sobre todo en USA, se venden por el sistema de hacer reuniones con potenciales clientes a los que convencer de las bondades del aparato y endosarles uno (tal como se hizo en su día con Tupperware).

He puesto al inicio de esta entrada una imagen genérica de cómo funcionan estos aparatos (podéis ampliarla clicando en ella). Básicamente toman agua de grifo, la filtran en un filtro clásico de carbón activo, una forma de eliminar el cloro presente, que podría dañar los electrodos de la celda electrolítica, corazón del aparato y de la que ahora hablaremos. Después del filtrado y si el agua no contiene de origen una cantidad sustancial de sales disueltas que aseguren la conductividad de la misma, se regula ese contenido mediante una serie productos que los suministradores del aparato también venden. Finalmente, ese agua así acondicionada, se mete en la llamada cámara o celda electrolítica, donde se le somete a un proceso de electrolisis, que la descompone en hidrógeno y oxígeno.

No voy a dar muchos detalles técnicos, pero a los iniciados les diré que el sistema electrolítico consta de los clásicos ánodo y cátodo, generalmente de titanio recubierto de platino. Es importante reseñar que esos electrodos se encuentran en compartimentos separados por un diafragma semipermeable hecho de plástico. Ello permite que en el ánodo se genere oxígeno (O2) gas, iones hidrógeno positivos y se acumulen aniones del tipo bicarbonato, cloruro, nitrato, etc, dependiendo de las sales que contenga el agua de partida. En el cátodo se genera hidrógeno gas (H2), iones hidroxilo y cationes tipo sodio, potasio, calcio o magnesio, provenientes igualmente de las sales disueltas. Eso hace que del compartimento anódico salga agua más ácida que la de partida y con un cierto poder oxidante, mientras del cátodo salga agua alcalina de poder reductor o, como suele denominarse en la propaganda de estos aparatos, antioxidante.

En todo lo anterior, este vuestro Búho tiene poco que objetar. El escepticismo comienza cuando, en el marketing de las casas vendedoras, empezamos a leer las maravillas ligadas al empleo de estos ionizadores. En primer lugar, las derivadas de beber agua alcalina (con pH superior a 7), una más de las opciones a la hora de seguir la llamada dieta alcalina, que os estarán vendiendo por todos los lados, ya sea en la tele, en la radio, en los magazines de fin de semana o, sobre todo y como siempre, en internet. El pH de los diversos tipos de agua (de grifo, manantiales naturales, aguas de mesa,..) puede variar bastante y así lo reconoce la legislación española en el Real Decreto 140/2003 Anexo I, que regula el pH de las aguas destinadas a consumo humano. En el mercado podéis encontrar aguas ácidas como la de Vichy Catalán (pH=5,9) o básicas (alcalinas) como la Font d'Or (pH=8,2) y en el mercado americano hay aguas de pH hasta 9,5. Pero todo esto que cuentan de la dieta alcalina es una patraña más de las muchas que giran en torno a nuestra alimentación. Comer o beber cosas alcalinas no altera el pH general de nuestro cuerpo, que tiene un mecanismo primario para controlarlo mediante la exhalación de CO2, que gobierna la cantidad de ácido carbónico en la sangre y, a partir de ahí, de una serie de equilibrios químicos bien establecidos.

Pero el marketing perverso de los fabricantes de ionizadores va un poco más lejos. Debéis saber que el agua alcalina de su ionizador no es agua alcalina cualquiera (es decir con pH superior a 7), como las de algunas de fuentes naturales que ya salen alcalinas de origen (y que acabo de mencionar) u otras a las que se adiciona un exceso de bicarbonato para aumentar su pH. La producida por el ionizador (que ellos llaman agua alcalina ionizada) tiene sus peculiares propiedades debido a que, además del alto pH, hay otros "cambios" generados en ella como consecuencia del proceso que ocurre en el interior del aparato. Y ello, proclaman,  hace que sea efectiva en la eliminación de antioxidantes, en tratamientos de cáncer, en la prevención y curación de la diabetes, Parkinson, arterioesclerosis, problemas degenerativos de la retina y otros (ver, por ejemplo, aquí, donde se cantan todas esas bondades, sin soporte científico alguno). Las razones aducidas tienen un doble origen que vamos a desmenuzar aquí.

Como probablemente sepáis, el agua es una molécula polar, lo que quiere decir que tiene partes de ella con cargas ligeramente positivas (localizadas en sus dos hidrógenos) y negativas (el oxígeno), como podéis ver aquí. Ello hace que las partes del agua con distinta carga de diferentes moléculas puedan atraerse y permanecer cerca, formando los llamados agregados o clusters. Su vida es efímera, porque esos agregados se están juntando y soltando continuamente, en periodos de tiempo tan pequeños como las billonésimas de segundo. Todo esto está muy estudiado, desde hace tiempo, por la Química Física y se sabe que esos agregados suelen implicar a unas 12-14 moléculas de agua al mismo tiempo. Los que me hayáis seguido en las entradas sobre la homeopatía recordaréis que la famosa "memoria del agua" se basa precisamente en esos agregados, capaces de retener la forma de la molécula del "principio activo" una vez que ha desaparecido por dilución y, en la lógica homeopática, capaces de curar igual que esa molécula que ya no está.

Pues bien, muchos vendedores de ionizadores proclaman que su aparato es capaz de disminuir ese tamaño habitual de los agregados de agua y dejarlo en 4/6 moléculas. Según ellos, y debido a ese menor tamaño, el agua penetra con mayor facilidad en los diversos componentes de las células y permite una hidratación mejor del organismo. Como otros muchos bulos sobre el posible efecto de fuerzas eléctricas o magnéticas que alteran la estructura conocida del agua, vuestro Búho no se cree esta patraña de los clusters pequeñitos, por mucho que para vestirlo, en alguna de las webs que lo proclaman, aparezcan prestigiosos médicos como Hiromi Shinya, un experto colonoscopista, autor del muy vendido libro La Enzima Prodigiosa, libro e ideas que provocaron que mi amigo JM Mulet (todo un Petronio) fuera tildado de gordo por la inefable Mercedes Milá.

Este asunto de los clusters de menor tamaño ya es un poco viejo. En una de mis contribuciones a Naukas, os contaba el caso de un agua de propiedades maravillosas, vendida en USA bajo el nombre de Penta, que atribuía sus virtudes a clusters más pequeños que los habituales. Tras muchos avatares, que han incluido una demanda ante la Corte Suprema de California, el agua se sigue vendiendo con el mismo nombre pero su marketing se basa, exclusivamente, en la extremada pureza de la misma. En otros casos, y para vender las bondades de los productos de una conocida marca de cosmética, se aducen cambios de estructura en los agregados, esta vez en forma de icosaedros.

La otra pata de los atributos del agua ionizada por estos aparatos es el hidrógeno gas que se produce en el compartimento catódico y que sale acompañando al agua alcalina. En 1985, Hidemitsu Hayashi, Director del japonés Instituto del Agua, adquirió un ionizador y comenzó a estudiar las propiedades del agua por él producida, utilizándola como bebida habitual y preparación de comidas en la Kyowa Medical Clinic. Según él, observó una clara mejoría en pacientes que sufrían trastornos gastrointestinales y otras patologías ligadas al hígado. Para explicarlo, en 1995, propuso la hipótesis de que esas mejoras se producían como consecuencia del gas hidrógeno generado en los ionizadores, que ejercía un activo papel de "cazador" de los radicales libres que nuestro organismo genera como consecuencia del oxígeno que continuamente estamos inspirando. Esa hipótesis pareció confirmarse por una serie de trabajos in vivo que, a partir de 1997, fueron publicados por el grupo de otro investigador japonés, S. Shirahata, aunque posteriormente, en 2004, un extenso trabajo, otra vez japonés, desmontó la mayor parte de las hipótesis y resultados de los dos investigadores anteriores.

El asunto sobre el papel terapeutico del hidrógeno parece haber renacido como consecuencia de un trabajo publicado en 2007 por el grupo del Prof. Ohta en una de las secciones de la muy prestigiosa revista Nature [Nat. Med. 13, 688 (2007)] en el que las propiedades terapeuticas del hidrógeno se ligan a su papel en el funcionamiento de las células del organismo. Sin embargo, el trabajo de Ohta y otros posteriores no utilizan los ionizadores como fuente de agua enriquecida en hidrógeno. Por el contrario, consiguen un agua saturada en hidrógeno al hacer pasar éste, proveniente de una bombona en el que está almacenado a alta presión, por aquella, hasta conseguir una concentración de saturación que difícilmente se alcanza en los ionizadores. Se pueden encontrar muchos detalles sobre este papel del hidrógeno en la web de la llamada Molecular Hydrogen Foundation, de cuyo Panel Asesor forma parte el propio Prof. Ohta. En esa web, que me he leído en detalle, ponen particular énfasis en que sus prácticas no se confundan con el habitual marketing de los ionizadores, fundamentalmente porque las concentraciones de hidrógeno que estos proporcionan son pequeñas y muy variables, dependiendo del diseño del aparato y del mantenimiento de los electrodos del mismo.

La lectura de esa web me ha dejado un importante poso escéptico, aunque he optado por permitir que el tiempo pase mientras la vigilo y poder ver así lo que se va haciendo en el próximo futuro. Mientras tanto y aunque cada uno se gasta el dinero en lo que quiere, no os recomiendo una inversión en uno de esos ionizadores. Es cierto que tienen una pinta muy de diseño tecnológico y, sin duda, dará a vuestra cocina un tono de lo más californiano. Pero dudo que vuestra salud note algo.

Leer mas...