lunes, 18 de septiembre de 2017

Química e indicadores paleoclimáticos (I)

Raro es el día que los medios de comunicación no nos bombardean con alguna noticia relacionada con el calentamiento global y sus consecuencias. Una parte de esas informaciones describen datos experimentales contrastables, como el aumento en la concentración de CO2 en la atmósfera, el aumento de la temperatura global del planeta o la disminución del pH en los océanos. Pero una parte no menos importante de esas informaciones se refieren a predicciones sobre lo que va a pasar con esas cuestiones en un futuro más o menos próximo que, por el momento, suele cifrarse con fecha tope en 2100. Se supone que van destinadas a nuestros políticos, para que tengan argumentos a la hora de tomar medidas paliativas ante los efectos de esos cambios, pero creo que a nadie se le escapa que el tratamiento que los medios hacen de esos pronósticos es, muchas veces, bastante catastrofista.

Las mencionadas predicciones se realizan a base de modelos matemáticos, más o menos sofisticados, a los que viene bien disponer de datos experimentales del pasado para comprobar su fiabilidad. Solo así puede uno tener una idea razonable de las posibilidades de ese modelo a la hora de ponerlo a trabajar en la predicción del futuro, algo siempre complicado y, especialmente, en un sistema tan caótico como el clima a largo plazo.

El problema es que no tenemos tantos datos sobre el pasado. Por ejemplo, la magnitud emblemática en el calentamiento global, la temperatura en diferentes lugares de nuestro planeta, se empezó a medir a finales del siglo XVII desde cuando, excepcionalmente, tenemos registros de lo que se conoce como Temperaturas de la Inglaterra Central (CET). En otros países existen también estaciones emblemáticas que acumulan datos desde mediados del XIX o posteriores. El observatorio de Igueldo, en mi pueblo, comenzó en fecha relativamente tardía (1928) aunque es de los más veteranos de España. Pero muchas de esas estaciones tempraneras pertenecen al Hemisferio Norte, con lo que deducir de ahí una temperatura global de la Tierra y su evolución durante los pasados decenios o siglos es realmente aventurado. Y ya no digamos de registros de la temperatura de los océanos, principales constituyentes del planeta azul, de los que casi no ha habido registros hasta muy recientemente. Y lo mismo pasa con otras medidas que ahora nos interesan, como las mencionadas relativas a la concentración de CO2, al pH de los océanos o a cosas como el nivel del mar.

Pero, como dicen los meteorólogos, el clima no es "el tiempo". Predecir el clima hasta 2100 (o más allá) no es predecir el tiempo meteorológico a cinco días vista. Y los modelos necesitan, como he mencionado antes, tener datos de muchas variables, extendiéndose muchos siglos hacia atrás, para comprobar previamente la fiabilidad de sus predicciones futuras. Y ello solo es posible, indirectamente, gracias a una serie de herramientas que se ha dado esa rama de la Ciencia que llamamos Paleoclimatología y que se agrupan bajo la denominación de Indicadores Climáticos (o Climate Proxies, en la literatura en inglés). Como muchos de esos indicadores están basados en conceptos y técnicas analíticas ligadas a la Química, bien merece que hablemos aquí de ellos. Aunque, me temo, eso va a dar para más de una entrada.

Los testigos de hielo (Ice Cores) tomados de glaciares y regiones del planeta permanentemente cubiertas por hielo, son una excelente fuente de indicadores climáticos con resonancias químicas. Por ejemplo, tanto Groenlandia como la Antártida tienen espesores de hielo de tal magnitud y pureza que nos permiten extraer de ellas cilindros de hielo, como el que veis en la figura que ilustra esta entrada (y que podéis ampliar clicando en ella). Estos gélidos "chorizos" permiten estudiar diversas variables acumuladas en su interior, en intervalos de tiempo que cubren 100.000 años en el caso de Groenlandia y 400.000 o más en el caso de la Antártida.

Con esos "testigos" en el laboratorio son varias las variables ligadas al calentamiento global que podemos estudiar. Por ejemplo, la composición de la atmósfera y su evolución. Cuando en estos lugares de climas extremos nieva, nuevas capas de hielo se generan a partir de la nieve y se acumulan sobre las anteriores. En el tránsito entre los copos de nieve y el hielo consistente, el aire de la atmósfera del momento queda ocluido en el hielo y, con él, los diferentes gases constitutivos de esa atmósfera, nitrógeno, oxígeno, CO2 y, en menor medida, otros gases como el metano y óxidos de nitrógeno.

Así que si capturamos por algún procedimiento esos gases a diferentes niveles de los "chorizos" de hielo y los analizamos, podemos reconstruir la evolución de la composición de la atmósfera en esos gases a lo largo del tiempo. Y así si vais a este enlace, podéis ver la evolución en la atmósfera en lo relativo al CO2,, metano y óxido de nitrógeno en uno de los testigos más mencionados en la literatura, obtenido en la Antártida y que cubre los últimos 800.000 años. Y si ya os centráis, a partir de esos datos, en el último milenio, parece evidente que, sobre todo en las últimas décadas, el contenido de la atmósfera en esos gases ha crecido de forma clara, particularmente en lo relativo al CO2, cuya concentración está expresada en partes por millón (ppm), mil veces superiores a las partes por billón (ppb) de los dos otros gases. Ese crecimiento ha sido confirmado en años recientes (a partir de 1959) por las medidas realizadas en el Laboratorio hawaiano de Mauna Loa, dedicado a este fin.

Pero el hielo de los testigos proporciona mucha más información. El hielo es agua y, en tanto que agua, sus moléculas están constituidas por átomos de hidrógeno y átomos de oxígeno. Aquí, para los que ya han olvidado su Química del bachillerato, tengo que recordar que cualquier átomo está constituidos por protones, electrones y neutrones. Estos últimos, los neutrones, para un determinado átomo, pueden variar, dando lugar a los llamados isótopos. Por ejemplo el hidrógeno más común tiene un protón, un electrón y ningún neutrón, pero hay un isótopo del hidrógeno que tiene un neutrón en su nucleo y que llamamos Deuterio. Lo mismo pasa en el oxígeno. El oxígeno normal (oxígeno-16) tiene 8 protones, 8 electrones y 8 neutrones, pero el llamado oxígeno-18 tiene 10 neutrones y no ocho. Como consecuencia de ello, un átomo de deuterio pesa más que un átomo de hidrógeno normal y un átomo de oxígeno-18 pesa más que uno de oxígeno-16.

La mayoría de las moléculas de agua están constituidas por un oxígeno-16 y dos hidrógenos normales. Pero hay otras combinaciones de isótopos de hidrógeno y oxígeno que dan lugar a "otras aguas". Las más relevantes para esta discusión son la constituida por dos hidrógenos normales y un oxígeno-18 y la constituida por un hidrógeno normal, un deuterio y un oxígeno-16. Estas dos últimas, y muy minoritarias, formas del agua son más pesadas que el agua de toda la vida que llena ríos, lagos y océanos de la Tierra. Cuando el agua de estos lugares se evapora, el agua normal y mayoritaria lo hace con mayor facilidad que las dos formas minoritarias, por ser menos pesada, con lo que el vapor de las nubes que se forman en esos lugares suele llevar una proporción del agua convencional superior a la que se da en los océanos. Pero cuando ese vapor viaja en forma de nubes hasta los polos y condensa para caer en forma de nieve, caen en mayor proporción relativa las moléculas más pesadas de agua, las que contienen los isótopos deuterio y oxígeno-18. Este lío de diferentes moléculas de agua hace que el análisis de la concentración de deuterio y oxígeno-18 en el hielo de los testigos permita reconstruir la velocidad a la que el agua se ha evaporado desde los océanos y ha acabado como nieve en los polos. Como la evaporación del agua y posterior caída en forma de nieve depende de la temperatura, uno puede reconstruir la temperatura ambiente mediante los análisis mencionados. Un poco complicado pero creo que suficientemente entendible.

Este tipo de análisis ha permitido, por ejemplo, reconstruir la temperatura de los últimos 800.000 años a partir de las variaciones en la composición en deuterio de testigos de hielo tomados en la Antártida. Y así, en esta figura, se muestran esos datos junto con la evolución de la composición en CO2 de la atmósfera, obtenida a partir del análisis del aire atrapado en esos mismos testigos. Se ve que hay una correlación entre uno y otro tipo de datos, mostrando los cambios que ambos han sufrido a lo largo de ese extenso período de tiempo.

A raíz de este tipo de gráficas hay algunos encendidos debates sobre qué fue antes "el huevo o la gallina" y las implicaciones que eso tiene en la situación actual. Aunque, en principio, parece que en épocas pasadas la subida de temperaturas fue anterior a la subida en la concentración del CO2, dicen algunos de los que saben de esto que, en el momento presente, esa correlación puede invertirse al ser nosotros los que estamos forzando la subida en la concentración de ese gas.

Pero hasta ahí no llego. El Búho necesitaría otra vida para leer mucho más sobre estas cosas y tener una opinión fundada al respecto. Aunque sobre otros indicadores climáticos creo que lo tengo más claro. Pero eso da para otro post.

Leer mas...